Präanalytik

Univ. Prof. Gabriele Baumann, MSc, MBA Institut für medizinisch chemische Labordiagnostik

Was ist Präanalytik?

Präanalytik – was ist das?

- Präanalytik umfasst den gesamten Zeit- und Tätigkeitsbereich bis zur Analyse einer Probe
 - Patientenvorbereitung
 - Probenabnahme
 - Probentransport
 - Probenvorbereitung

Präanalytische Prozess

Die präanalytische Phase umfasst mehr als 20 Einzelschritte

Test beantragen

- Anforderung erhalten
- Auftragsformular ausfüllen
- Mitarbeiter mit der Entnahme beauftragen
- Dringlichkeitsstufe markieren
- Material zusammenstellen

Probe entnehmen

- Patient identifizieren
- · Patient vorbereiten
- · Probe entnehmen
- am Krankenhausbett
- beim Patienten
- zu Hause
- in der Arztpraxis
- Labor
- · Etikettieren
- Entsorgung der Materialien

Probe ins Labor transportieren

- Probe für Transport priorisieren
- Probe ans Labor senden
 - Rohrpost
 - Roboter
 - Transport zu Fuß
 - Kurier

Empfang der Probe im Labor

- · Zugriff
- Probenkennzeichnung anbringen / prüfen
- Barcode f
 ür den Test
- Notfallproben identifizieren
- Probe in Rack ordnen

Probe für die Analyse vorbereiten

- · Zentrifugieren
- Aliquotieren
- Vorbehandlung
- Probe wieder im Rack ordnen

Probe zum

Laborbereich

transportieren

- Probe an entsprechenden Laborbereich senden
 - Hauptlabor
 - Referenzlabor
- · Probe in Rack ordnen

Präanalytische Phase außerhalb des Labors

Präanalytische Phase im Labors

Frequenz von "Labor Fehlern"

0,05 % - 0,11 % der Patienten

0,33 % - 0,61 % der Ergebnisse

Präanalytische Phase: 68 - 75 %

Analytische Phase: 13 - 16 %

Postanalytische Phase: 9 - 19 %

Bonini et al, Chlin Chem 2002

Folgen von "Labor Fehlern"

Keine Folgen 43 – 74 %

Milde Folgen 13 - 23 %

(Zeitverzögerung,

Folgeuntersuchungen)

Moderate Folgen 6,4 – 50 % (möglicher

Schaden, inadäquate

Therapie)

Schwerewiegende Folgen 6,4-25 % (falsche

medizinische

Interventionen)

Folgen von "Labor Fehlern"

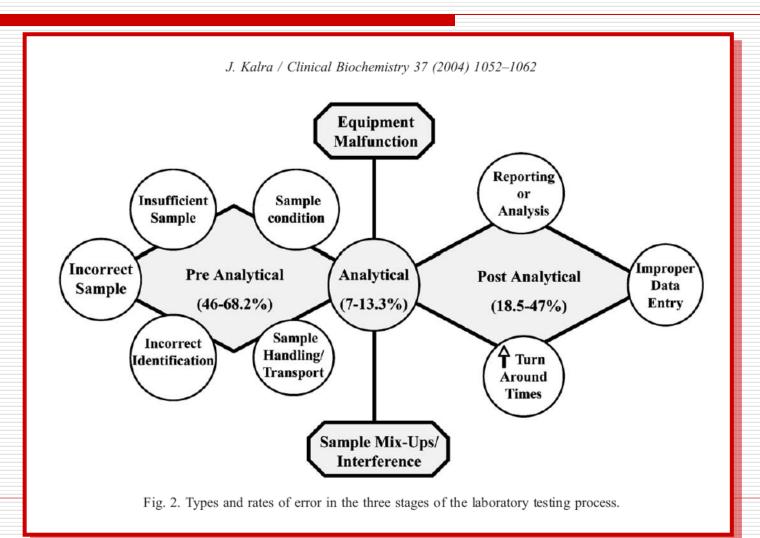
Bei 41.000 stationären Patienten/Jahr

(Krankenhaus der Größe von Steyr/Enns)

würden bei

21 – 45 Patienten "Labor Fehler" auftreten,

die bei


3 – 11 Patienten zu schwerwiegenden Folgen führen.

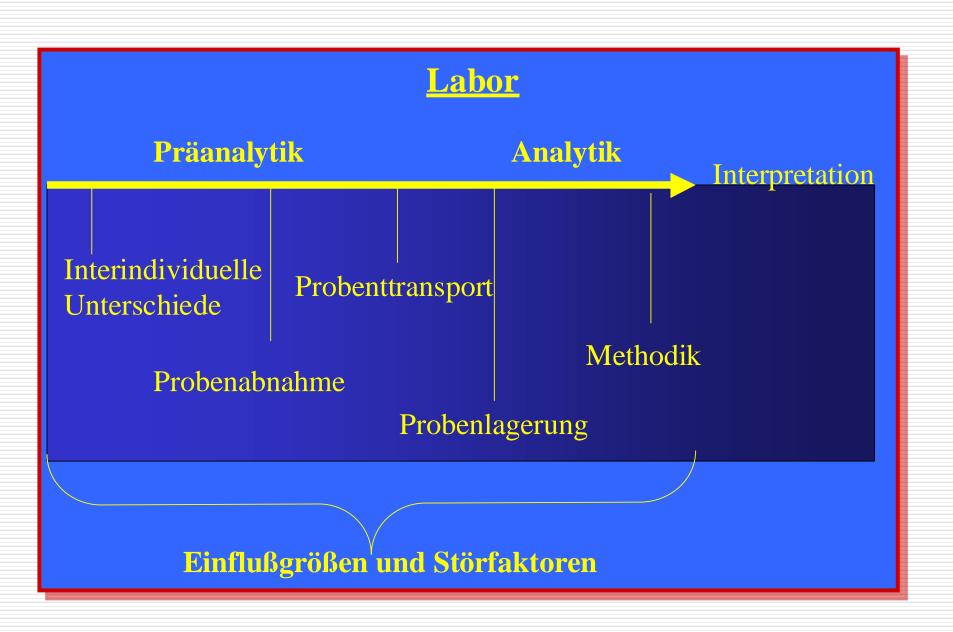
Diese Zahl wäre bei POCT Bestimmung um den Faktor 10 höher!!!!

Kosten von "Laborfehlern"

- 0,2 0,3 % der jährlichen Betriebskosten eines Krankenhauses werden durch präanalytische Fehrer verursacht
- □ Für ein durchschnittliches Krankenhaus > € 350.000,--

"Laborfehler"

"Laborfehler"


Präanalytischer Fehler	%
Probennahme aus Infusionsweg	1,9
Probenkontamination	0,6
Falsche Probenmenge	13,1
Leeres Probengefäß	6,9
Falsches Probenröhrchen	8,1
Falscher Transport (gefroren/nicht gefroren)	1,9
Kein Probenröhrchen	3,1
Falscher Abnahmezeitpunkt (bei Medikamentenspiegel)	0,6
Falsche Patientenidentifikation	8,8
Anforderungsfehler	7,5
Falsche Datenübertragung	3,8
Keine Anforderung	1,9
Falsche Interpretation der Anforderung	1,3
Nicht im Labor eingelangt	2,5
Gesamt	61,9

Laborfehler:

Statistik der verworfenen Proben, LKH Steyr, 1.1.2011 – 20.6.2011

Zu wenig Probe	300	
Geronnen	216	
Hämolytisch	39	
Falsches Röhrchen	62	
Probe leer	32	
Probe doppelt	24	
Keine Probe eingelangt	11	
Abnahmefehler	36	
(z.B. Probe verdünnt, zu viele Luftblasen, et	cc)	
Sonstiges	6	
Gesamt	726	

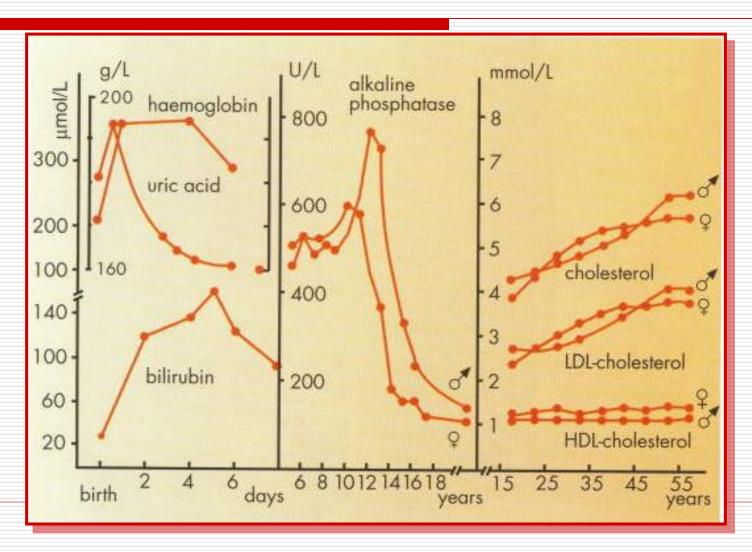
- Probenverwechslung nicht eingeschlossen!!!!
- Klin. Chem. Proben, die automatisch zentrifugiert werden, und erst vor der Analyse als hämolytisch erkannt werden nicht eingeschlossen!!

Präanalytische "Fehler"

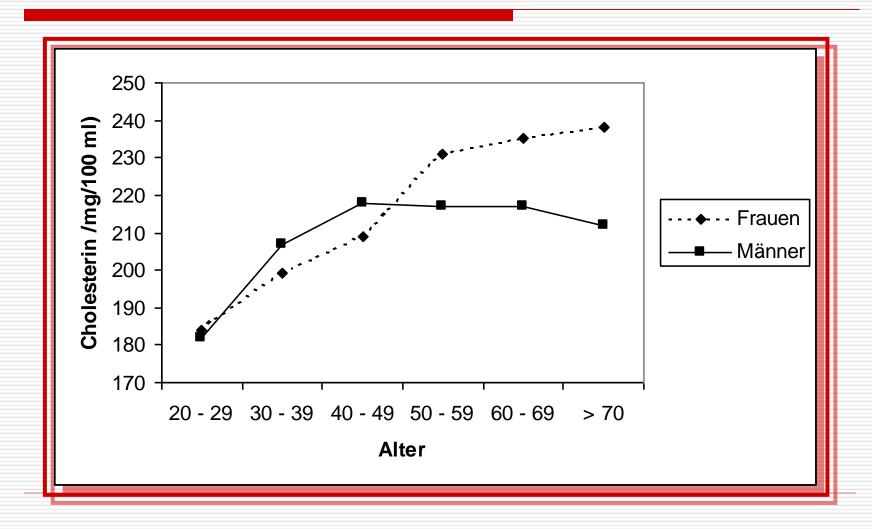
- Einflussgrößen: verursachen in-vivo Veränderungen
- Störfaktoren: verursachen in-vitro Veränderungen
- Organisatorische Faktoren

- Nicht veränderbare Einflussgrößen
 - Geschlecht und Alter
 - Ethnie
 - Biorhythmus
- Veränderbare Einflussgrößen
 - Lebensgewohnheiten (z.B. Ernährung, Genussmittel, Aktivität, etc)
 - Medikamente
 - Schwangerschaft

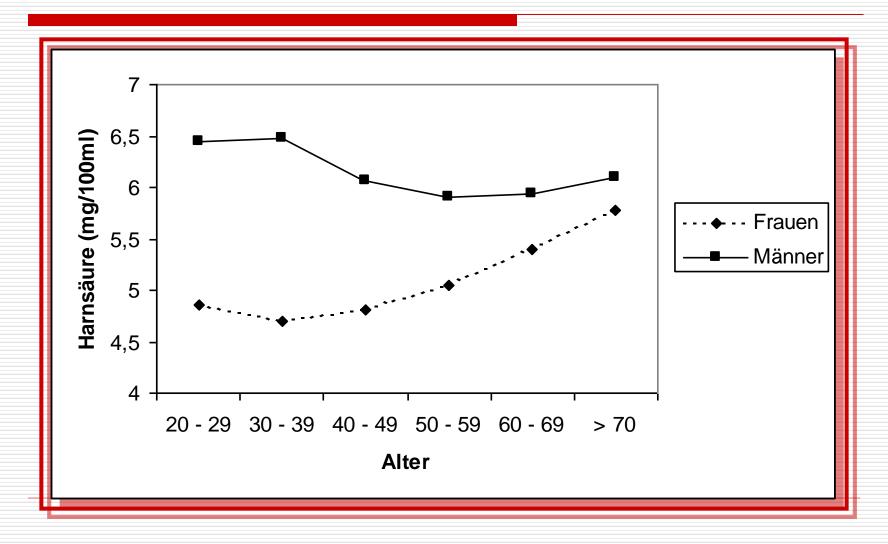
- Nicht veränderbare Einflussgrößen
 - Geschlecht und Alter
 - Ethnie
 - Biorhythmus
- Veränderbare Einflussgrößen
 - Lebensgewohnheiten (z.B. Ernährung, Genussmittel, Aktivität, etc)
 - Medikamente
 - Schwangerschaft

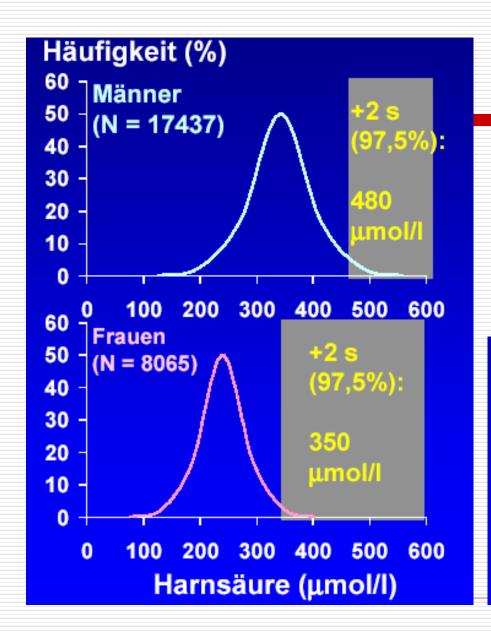

Einflußgrößen "Geschlecht und Alter"

- "Sex-related" Referenz- oder Normbereiche
- "Gender-related" Referenz- oder Normbereiche
- Geschlechtsspezifische Interpretation


Einflußgrößen "Geschlecht und Alter"

- "Sex-related" Referenz- oder Normbereiche
- "Gender-related" Referenz- oder Normbereiche
- ☐ Geschlechtsspezifische Interpretation


Alter und Geschlecht



Geschlechts- und altersabhängige Cholesterinwerte

Geschlechts- und altersabhängige Harnsäure-Werte

Harnsäurekonzentration bei Männern und Frauen

Definition der Hyperurikämie (Harnsäure i. S. > 97.5 Perzentile) in Abhängigkeit von Alter und Geschlecht

	Harnsäure i. S. (μmol/l)			
Alter	Männer	Frauen		
45.04	444	224		
15-24	444	324		
25-34	486	330		
35-44	474	336		
45-54	486	348		
55-64	486	384		

Harnsäurekonzentrationen bei Männern und Frauen

Referenzbereiche (epidemiologisch):

Frauen: $2,3 - 6,1 \text{ mg/dl } (137 - 363 \mu\text{mol/l})$

Männer: $3,6 - 8,2 \text{ mg/dl} (214 - 488 \mu \text{mol/l})$

Umrechnungsfaktor: $mg/dl \times 59,48 = \mu mol/l$

Häufigkeit der Gichtanfälle	Harnsäurekonzentration
0,5 %	7.0 - 8.9 mg/dl
4,9 %	> 9,0 mg/dl

Referenzbereich (klinisch):

< 7.0 mg/dl

Eisenstoffwechsel

□ Eisengehalt Frauen: 58,6 mg /kg KG

Männer: 60,3 mg/kg KG

□ Eisenverlust: Männer u.

nichtmenstruierende

Frau: 0,5 - 1 mg/Tag

Eisenverlust durch

Menstruation:

15-30 mg

Laut WHO leiden 50% aller fertilen Frauen der westlichen Länder an einer

Hyposiderinämie

Referenzbereiche Eisen

Frauen (nicht schwanger)	Männer
37-165 μg/dl	40-155 μg/dl
23-134 μg/dl	35-168 μg/dl
39-149 μg/dl	40-120 μg/dl
	37-165 μg/dl 23-134 μg/dl

Eisenstoffwechsel

Eisenkonzentration im Serum bei gesunden Personen: 12,9% VK im Tagesablauf 26,6% VK von Tag zu Tag

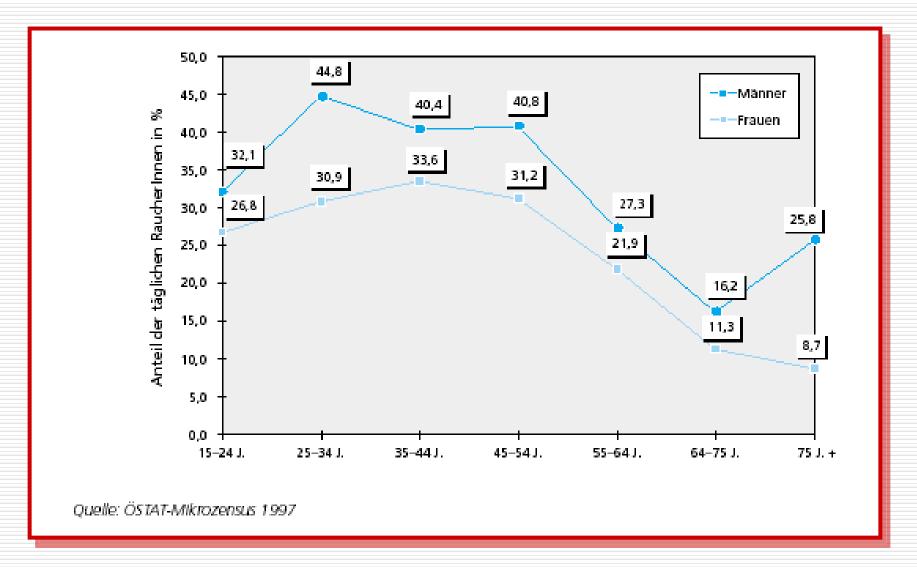
wenn jeweils zur gleichen Zeit Blut genommen wird

- ☐ Gipfelwerte von Eisen ca. um 14.00 Uhr
- Eisenkonzentration abhängig von Nahrungsaufnahme (Änderungen innerhalb von 10 min.)

Geschlechtsspezifische Referenzbereiche

<i>*</i> .		Referenzbereich			
Analyt	Einheit	Frauen prämenopausal	Frauen postmenopausal	Männer	
Ferritin	ng/ml	2-96	5-277	29-371	
Hämoglobin	g/dl	12,3-15,3		14,0-17,5	
Myoglobin	ng/ml	<51		<72	
Coeruloplasmin	mg/dl	25-60	30-50 (>50J. u. Östrogeneinnachme) bis 130 (Schwangere) 27-66 (orale Kontrazeptive)	22-40	
CDT (Carbohydrate- deficient Transferrin)	U/I	17,7-23,1	13,2-17,4	13-22,6	
Erythrozyten	$10^{6}/\mu 1$	4,1-5,1		4,5-5,9	

Prävalenz des Eisenmangels


Personen	Eisenmangel %	Eisenmangelanämie %
Frauen 20 - 49	11	5
Frauen 50 - 69	5	2
Frauen >70	7	_
Männer 20 - 49	<1	<1
Männer 50 - 69	2	-
Männer >70	4	-
Schwangere:		
1. Trimester	9	_
2. Trimester	14	-
3. Trimester	37	_

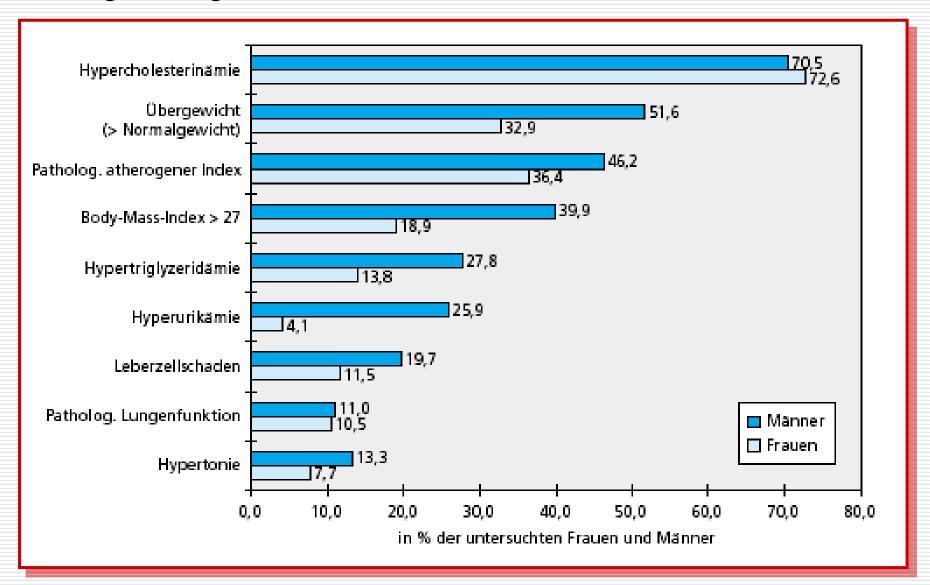
Daten des National Health and Nutrition Examination Survey (NHANES)

Einflußgrößen "Geschlecht"

- "Sex-related" Referenz- oder Normbereiche
- "Gender-related" Referenz- oder Normbereiche
- ☐ Geschlechtsspezifische Interpretation

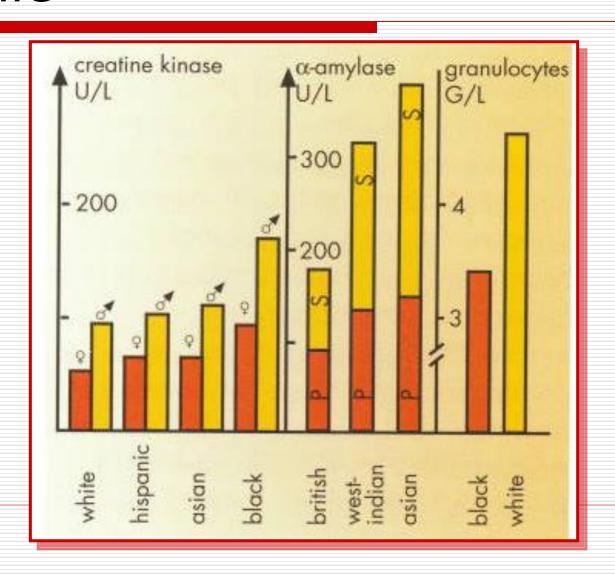
Raucherstatus in Wien nach Alter und Geschlecht

Grafik 9: Alkoholkonsum nach Geschlecht, Wien 1996

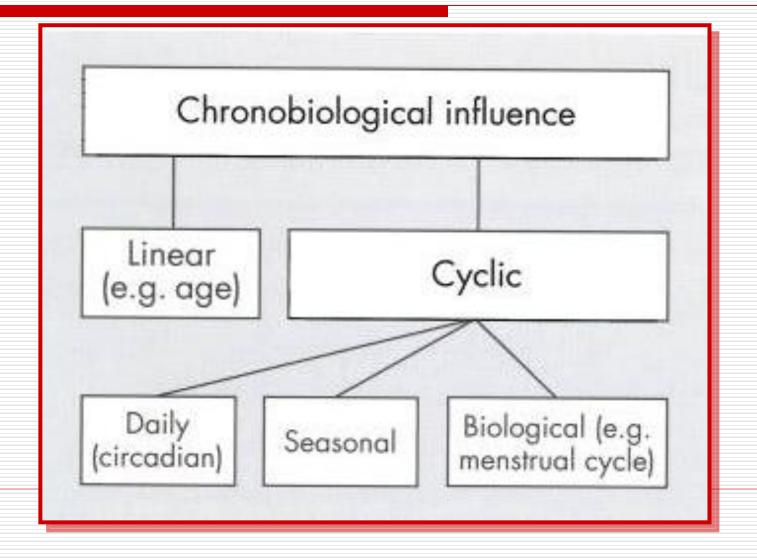

Alkoholkonsum nach Geschlecht (Angaben für Wien)							
22,5 % fast täglich	6,1 %						
24,6 %1- bis 2-mail pro Woche	14,2 %						
20,6 % mehrmals Im Monat	18,8 %						
9,3 % 1- bis 2-mai pro Monat	14,6 %						
12,3 % seltener	24,8 %						
10,6 % nle	21,6 %						

Quelle: Schmeiser-Rieder et al., 1997; Kunze et al., 1996: SERIMO-Studie

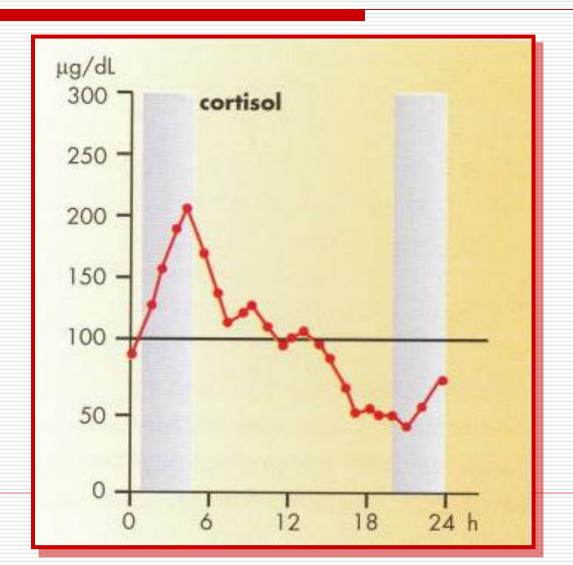
Geschlechtsabhängige Prävalenz unterschiedlicher Erkrankungen


Untersuchungsergebnis	Frauen		Männer		insgesamt	
ontersuchungsergebnis	absolut	in % ²⁾	absolut	in % ²⁾	absolut	in % ²⁾
Übergewicht (> Normalgewicht ³⁾)	1.860	32,9	3.572	51,6	5.432	43,2
Body-Mass-Index (BMI) > 27	1.312	18,9	2.205	39,9	3.517	28,0
Verdacht auf Hypercholesterinärnie ⁴⁾ (Cholesterin > 200)	4.015	72,6	5.055	70,5	9.070	71,5
Verdacht auf Hypertriglyzeridämie ⁴⁾ (Triglyzeride > 150)	765	13,8	1.993	27,8	2.758	21,73
Pathologischer atherogener Index (AI) ⁵⁾ (Männer > 4,5; Frauen > 3,5)	2.060	36,4	3.198	46,2	5.258	41,8
Verdacht auf Diabetes	271	4,8	598	8,6	869	6,9
Verdacht auf Leberzellschaden (GGT Männer > 28; Frauen > 18)	649	11,5	1.362	19,7	2.011	16,0
Verdacht auf Hyperurikärnie (erhöhte Harnsäurekonzentration im Blut)						
(HS > 7)	233	4,1	1.796	25,9	2.029	16,1
Verdacht auf Hypertonie (WHO-Grenzen)	433	7,7	924	13,3	1.357	10,8
Verdacht auf Haltungsschäden	307	5,4	118	1,7	425	3,4
Verdacht auf Hörstörungen	265	4,7	458	6,6	723	5,7
Verdacht auf Struma	564	10,0	175	2,5	739	5,9
Verdacht auf Nierenfunktionsstörung (Kreatinin > 1,2)	95	1,7	191	2,7	286	2,3
Verdacht auf Harnwegsinfekt	58	1,0	14	0,2	72	0,6
Verdacht auf Anämie	993	17,6	591	8,5	1.584	12,6
Pathologische Lungenfunktion	593	10,5	759	11,0	1.352	10,7
Pathologischer EKG-Befund	29	0,5	35	0,5	64	0,5
Mastopathie	509	9,0	-	-	509	9,0
Pathologische Zellabstriche	19	0,2	-	-	19	0,3
Untersuchungsempfehlungen	2.808	49,6	3.292	47,5	6.100	48,5

Häufigste Diagnose nach Geschlecht


- Nicht veränderbare Einflussgrößen
 - Geschlecht und Alter
 - Ethnie
 - Biorhythmus
- Veränderbare Einflussgrößen
 - Lebensgewohnheiten (z.B. Ernährung, Genussmittel, Aktivität, etc)
 - Medikamente
 - Schwangerschaft

Ethnie



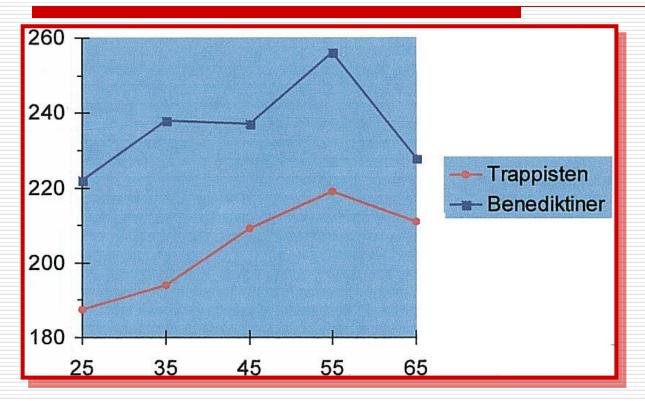
- Nicht veränderbare Einflussgrößen
 - Geschlecht und Alter
 - Ethnie
 - Biorhythmus
- Veränderbare Einflussgrößen
 - Lebensgewohnheiten (z.B. Ernährung, Genussmittel, Aktivität, etc)
 - Medikamente
 - Schwangerschaft

Biorhythmik

Biorhythmik

Biorhythmik

Tab. 5-11 Diurnal variation of selected analytes (S = serum; U = urine) (235)

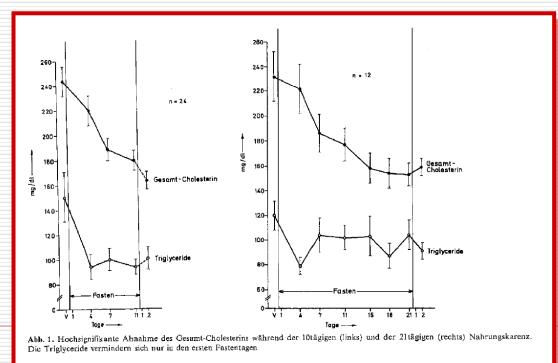

Analytes	Maximum (time of day)	Minimum (time of day)	Amplitude (percentage of daily mean)	70 (10 (10 (10 (10 (10 (10 (10 (10 (10 (1	Maximum (time of day)	Minimum (time of day)	Amplitude (percentage of daily mean)
ACTH	6-10	0-4	150-200	Norepinephrine (S, U)	9-12	2-5	50-120
Cortisol (S,U)	5-8	21-3	180-200	Haemoglobin	6-18	22-24	8-15
Testosterone	2-4	20-24	30-50	Eosinophils	4-6	18-20	30-40
TSH	20-2	7-13	5-15	Iron (S)	14-18	2-4	50-70
T ₄	8-12	23-3	10-20	Potassium (S)	14-16	23-1	5-10
Somatotropin	21-23*	1-21	300-400	Phosphate (S)	2-4	8-12	30-40
Prolactin	5-7	10-12	80-100	Sodium (U)	4-6	12-16	60-80
Aldosterone	2-4	12-14	60-80	Phosphate (U)	18-24	4-8	60-80
Renin	0-6	10-12	120-140	Volume (U)	2-6	12-16	60-80
Epinephrine (S)	9-12	2-5	30-50	Body temp.	18-20	5-7	0.8-1.0°C

^{*} Start of sleeping phase

Einflussgrößen

- Nicht veränderbare Einflussgrößen
 - Geschlecht und Alter
 - Ethnie
 - Biorhythmus
- Veränderbare Einflussgrößen
 - Lebensgewohnheiten (z.B. Ernährung, Genussmittel, Aktivität, etc)
 - Medikamente
 - Schwangerschaft

Alters- und Ernährungsabhängige Cholesterinwerte



Abhängigkeit des Serumcholesterins vom Alter und von der Ernährung. Arithmetische Mittel von Benedktinern (normale Kost) und

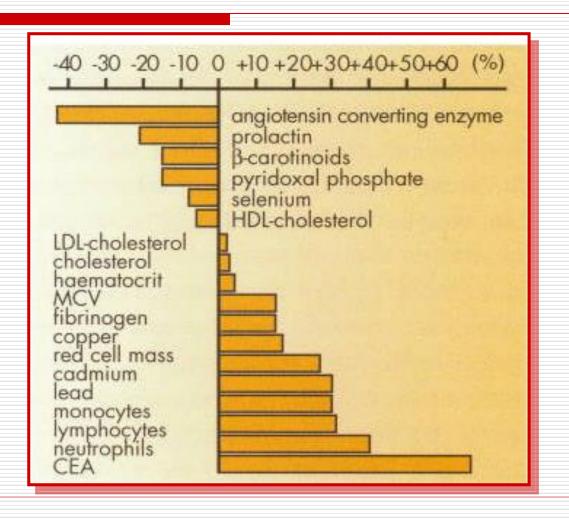
Trappisten (lacto-ovo-vegetabilische Diät)

Ernährung

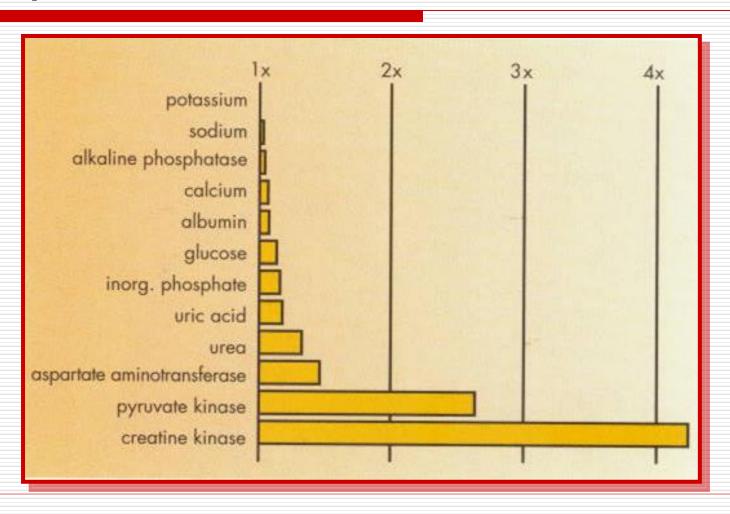
- Nüchternglucose: mindestens 8 stündige Nahrungskarenz
- ☐ Triglyceride: 12 stündige Nahrungskarenz

Opiate im Harn: Mohnstrudelphänomen

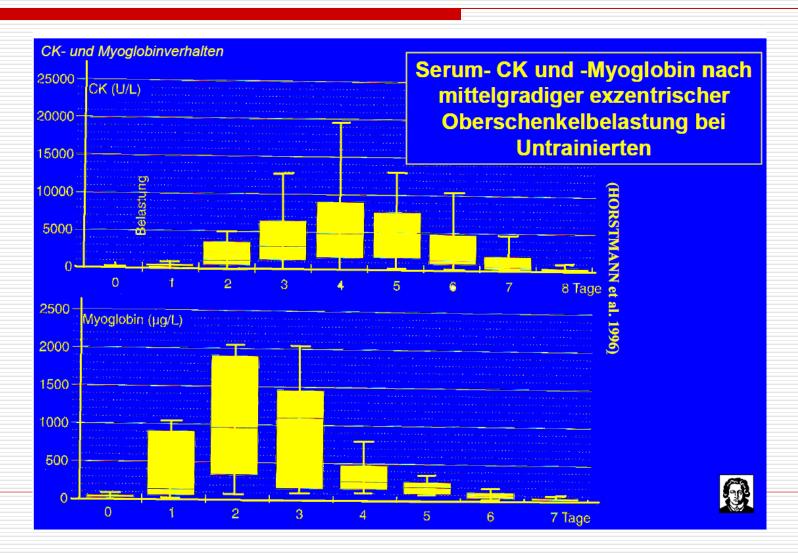
Morphinkonzentration in Mohnsamen je nach Herkunft							
türkischer Mohn 5µg/g			ösischer Mohn		hn		
in 100 g K u chen ca. 15 g M o h n							
D i . b . i .	inem Stück Küchen je	nach Herkunf	t der Moh	nsam en			
µ , u , h . n	4 5 0 0 pg M orphin						
	ne Schmerzdosis Mor	p h i n c a . 1 0 b i	s 1 0 0 m g				
Harnkonzentrationen naci	Harnkonzentrationen nach dem Genuss von 4 Opiatkonzentration Bewertung bei						
Stück Mohnkuchen mit	Mohnsamen franz.	mittels Abott	Testkit	200ng/ml Cut Off			
Herkunft (Billa)							
nach	30 min	32	ng/ml	neg.			
nach 5 h		3600 ng/ml		pos			
nach 14 h		813 ng/ml		pos			
nach 28 h		703	ng/ml	pos.			
			-	-			

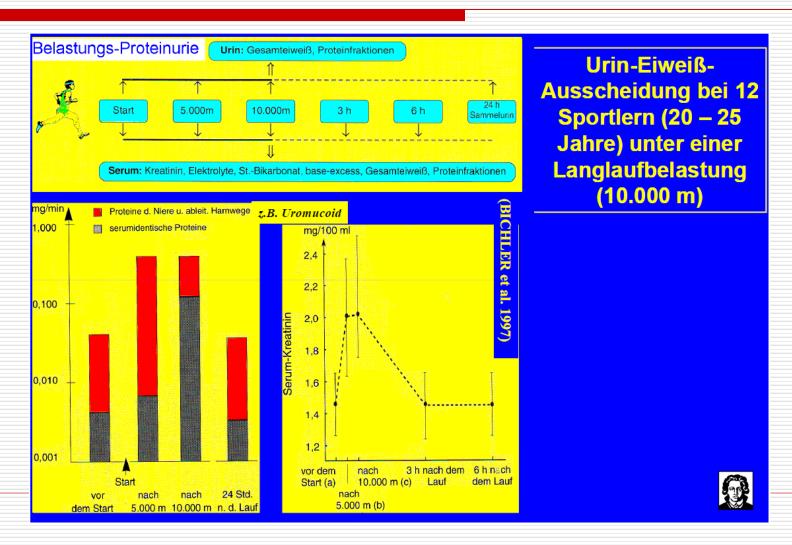

Okkultes Blut im Stuhl

- Nutzung der Pseudoperoxidaseaktivität von Hämoglobin beim Guajak Test (Hemo FEC®)
- □ Diät 3 Tage vor und während der Durchführung (2 3 % falsch positive Ergebnisse bei nicht Einhalten der Diät)
- Diät: kein rohes Fleisch, Fisch, keine blutreichen Nahrungsmittel (200 g Blutwurst verursacht falsch positives Ergebnis), keine peroxidase-haltigen rohen Obst- und Gemüsesorten → falsch positive Ergebnisse; Ascorbinsäure, Salicylate → falsch negative Ergebnisse
- Peroxidasehaltige Obst- und Gemüsesorten:
 - Brokkoli, Karfiol, weiße Rüben, Rettich, Radischen, Tomaten, grüne Bohnen, Kren
 - Melone, Banane



Rauchen


Deviation (%) of blood analyte concentrations between current smokers and non smokers, chronic effects (239)


Körperliche Aktivität

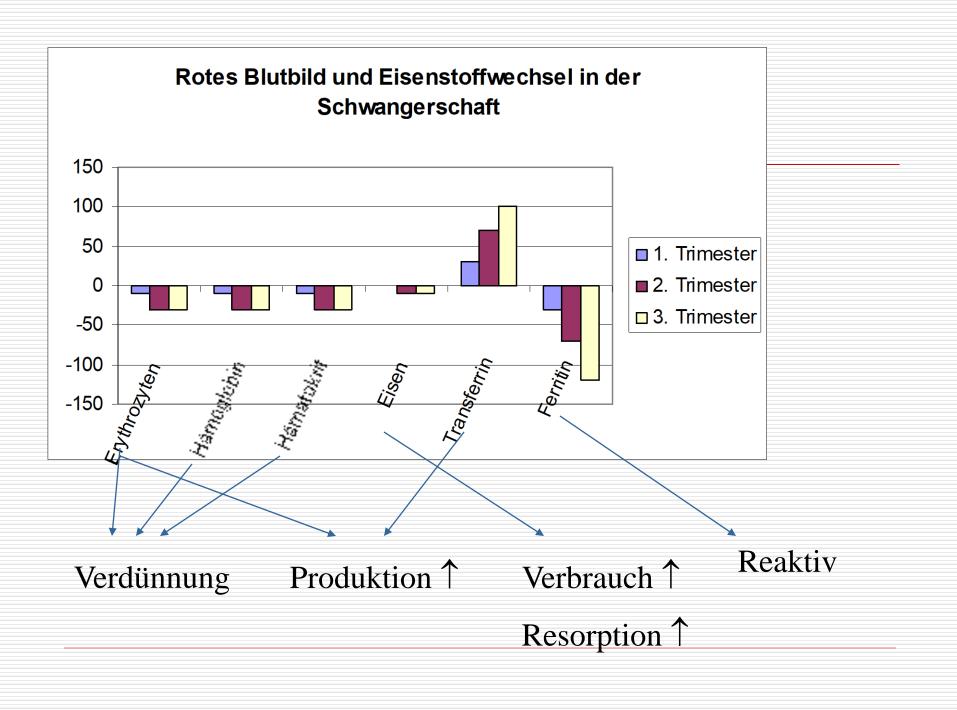
Serum-CK und Myoblobin bei Belastung

Belastungsproteinurie

Einflussgrößen

- Nicht veränderbare Einflussgrößen
 - Geschlecht und Alter
 - Ethnie
 - Biorhythmus
- Veränderbare Einflussgrößen
 - Lebensgewohnheiten (z.B. Ernährung, Genussmittel, Aktivität, etc)
 - Medikamente
 - Schwangerschaft

Medikamente


- □ Gewollte Veränderungen von Laborparametern
 - Coumarine → PZ
 - Heparine → APTT
 - Antidiabetiker → Blutglucose
 - Urikosurika → Harnsäure
 - Statine → Fettstoffwechsel
- Ungewollte Veränderungen von Laborparametern, die keine klinische Relevanz haben (Arzneimittelnebenwirkungen im weiteren Sinne)
 - Neue Antikoagulanzien: Veränderung von Gerinnungs-Globaltesten und Gerinnungseinzeltesten
 - Moderate Veränderung der Leberenzymwerte (Enzyminduktion) durch Psychopharmaka
 - Niedrige ALP durch Pilleneinnahme
- Arzneimittelnebenwirkungen im engeren Sinn
 - Blutbildveränderungen durch Chemotherapie, Virostatika, etc
 - CK-Erhöhung bei Statinen
 - Anstieg der Nierenfunktionsparameter durch Aminoglykosid-Antibiotiker verursachte Nierenschädigung

Einflussgrößen

- Nicht veränderbare Einflussgrößen
 - Geschlecht und Alter
 - Ethnie
 - Biorhythmus
- Veränderbare Einflussgrößen
 - Lebensgewohnheiten (z.B. Ernährung, Genussmittel, Aktivität, etc)
 - Medikamente
 - Schwangerschaft

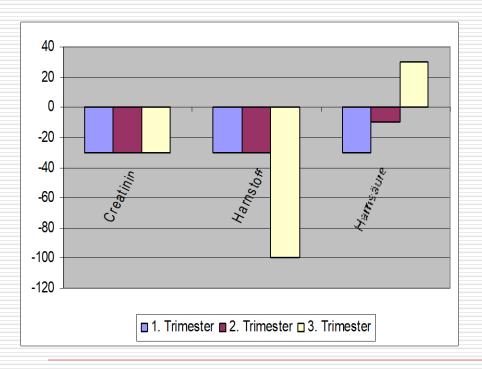
Ursachen für die physiologischen Veränderungen

- □Verdünnung
- ■Neubildung
- □Veränderte Isoenzymmuster
- □Vermehrte Ausscheidung durch die Niere
- ■Beeinflussung der Leberfunktion
- ■Mutter → Kind Transfer
- ■Anabole Stoffwechsellage

Rotes Blutbild und Eisenstoffwechsel in der Schwangerschaft

- □Gesamtkörpereisenbestand: 4 g
- □Eisenresorption normal: 1 mg/ Tag
- □Zusätzlicher Eisenbedarf in der Schwangerschaft: 1000 mg
- □Zusätzliches mütterliches Blutvolumen in der 33. SSW: 1600 ml (20 25 % Ery, 75 80 % Plasmavolumen)

Leberwerte in der Schwangerschaft


	1. Trimenon	2. Trimenon	3. Trimenon
Bilirubin	$\downarrow\downarrow\downarrow$	$\downarrow\downarrow\downarrow$	$\downarrow \downarrow$
AP*	\	$\uparrow \uparrow$	$\uparrow\uparrow\uparrow$
ALT(GPT)	\	\	Ø
AST (GOT)	\	\	Ø
GGT	\	$\downarrow \downarrow$	\
LDH	\downarrow	Ø	\uparrow

^{*}Veränderung des Isoenzymmusters

$$\downarrow \uparrow : 2 - 10 \%; \downarrow \downarrow \uparrow \uparrow : 11 - 30 \%; \downarrow \downarrow \downarrow \uparrow \uparrow \uparrow : 31 - 100 \%$$

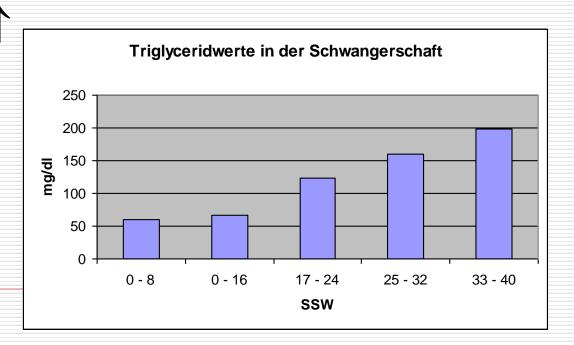
Veränderung der Nierenwerte in der normalen Schwangerschaft

□ Serum

□ Harn

- ☐ Glucosurie (bis zu 1000 mg/Tag)
- □ Proteinurie (bis zu 300 mg/Tag)

Glucosestoffwechsel


□Glucosebedarf des Feten im 3. Trimester

30 - 50 g Glucose/Tag

- "accelerate starvation": im
 Nüchternzustand ein sehr rascher und starker Abfall
 von Glucose (Nüchternglucose in der Schwangerschaft: 60 70 mg/dl)
- "facilitated anabolism": postprandial rascher Umbau von Glucose zu Triglyceriden (postprandiale Glucosewerte in der Schwangerschaft: 130 140 mg/dl)

Fettstoffwechsel

- □Freie Fettsäuren ↑
- ■Ketonkörper ↑
- □Triglyceride ↑ ↑ ↑ (bis zu 400 %)
- □Cholesterin ↑

Einflussgrößen

Patientin, 32 Jahre alt, Kontrolluntersuchung nach Infekt

			5	
Parameter	Wert	Einheit	Referenzbereich	
Substrate:				
Glucose	89	m/dl	70–115	
Creatinin	1,2	mg/dl	0,6–1,3	
Harnstoff	31,0	mg/dl	10–50	
Harnsäure	6,0	mg/dl	3,4–7,0	
Enzyme:				
CK	712	U/1	10–100	
CK-MB	14	U/l	<10 U/l; <6% der CK	
GOT (ASAT)	17	U/1	<19	
GPT (ALAT)	14	U/l	<23	
GGT	9	U/l	<19	
LDH	161	U/l	120–240	
AP	47	U/l	55–170	

Anmerkungen:

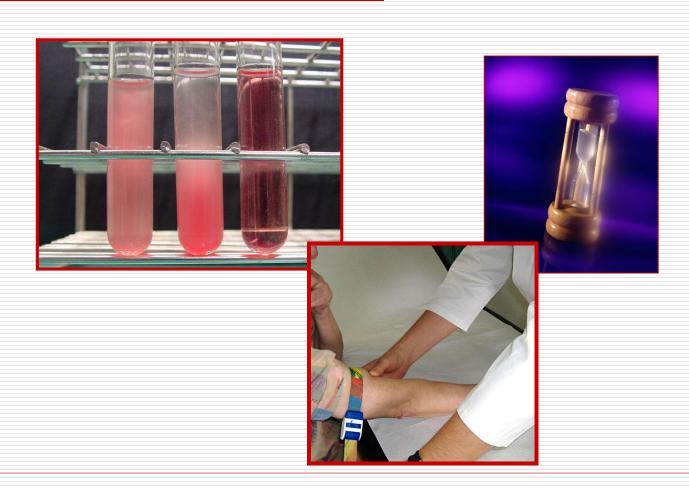
Die Erhöhung von CK undCK-MB ist auf einekörperliche Betätigung am Vortag zurückzuführen (2 Stunden Badminton gespielt). Da nach der Rekonfaleszenz das erste mal wieder Sport betrieben wurde, befand sich die Patientin in einem ungeübten Zustand, wodurch es zu CK-Erhöhung auf Grund von körperlicher Anstrengung kommt. Die AP Erniedrigung ist auf die Einnahme oraler Kontrazeptiva zurückzuführen.

Normaler Laborbefund einer Wöchnerin

Parameter		Einheit	Referenzbereich
Elektrolyte:			
Na	143	mmol/l	135–145
K	4,4	mmol/l	3,5–5,0
Cl	104	mmol/l	95–105
Substrate:			
Creatinin	0,80	mg/dl	0,6–1,3
Harnstoff	43	mg/dl	10–50
Harnsäure	7,6	mg/dl	3,4–7,0
Enzyme:			
GOT (ASAT)	19	U/l	<19
GPT (ALAT)	19	U/l	<23
GGT	6	U/l	<19
LDH	353	U/l	120–240
CHE	3934	U/l	3000–9000
AP	230	U/l	55–170
Serumproteine:			
Albumin	3,2	g/dl	135–145 3,5–5,0 95–105 0,6–1,3 10–50 3,4–7,0 <19 <23 <19 120–240 3000–9000 55–170 3,5–5,0
Gesamteiweiß	6,3	g/dl	6,6–8,7

Veränderung der "herz" spezifischen Parameter 3 Tage nach extremer körperlicher Belastung

Parameter	Wert	Einheiten	Referenzbereich
CK	5.372	U/l	<170
CK-MB	37	U/1	<24 U/l; <6% der CK
GOT (AST)	196	U/1	<35
GPT (ALT)	171	U/1	<45
GGT	51	U/1	<55
LDH	376	U/1	120–240
AP	58	U/1	55–170
Troponin T	0,01	ng/ml	<170 <24 U/l; <6% der CK <35 <45 <55 120–240 55–170 <0,03 <90
Myoglobin	977	ng/ml	<90


2.2. Veränderungen des Blutbildes während der Schwangerschaft (Eisensubstitution während der letzten Monate)

Parameter	6. SSW	32. SSW	Einheit	Referenzbereich	
Leuko	7,05	11,61	G/1	4,00-10,00	
Ery	4,25	3,66	T/1	3,80-5,50	
Нb	13,2	11,9	g/d1	12,0-18,0	
Hkt	38,3	33,7	%	36,0-53,0	
MCV	90,1	92,1	fl	80,0-98,0	
MCH	31,1	32,5	pg	26,0-32,0	
MCHC	34,5	35,3	g/dl	32,0-37,0	
Thrombo	265	220	G/1	140-430	

Anmerkungen:

- bei der Patientin hat sich trotz Eisensubstitution eine Anämie im Sinne einer normozytären Anämie entwickelt.
- Die Bestimmung der Parameter des Eisenstoffwechsels in der 32. SSW ergaben folgenden Befund mit Veränderungen im Sinne eines (prä)latenten Eisenmangels (Mangel an Vorratseisen):

Störfaktoren

Störfaktoren

- Probenabnahme
 - Kontaminationen
 - Stauung
 - Hämolyse
 - Verdünnung
- Probentransport
 - Zeit
 - Zustand des Probenmaterials (hämolytisch, ikterisch, lipämisch)
 - Temperatur
- Probenvorbereitung
- ☐ Haltbarkeit der Probe

Störfaktoren

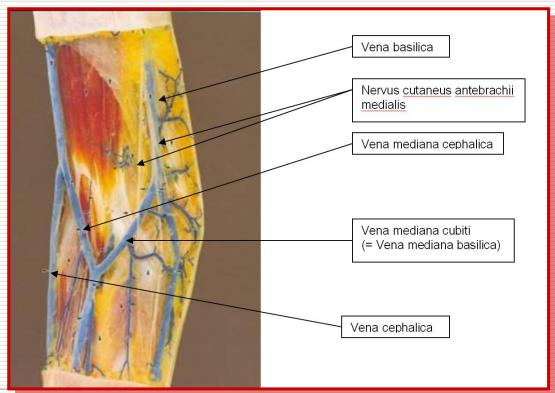
- Probenabnahme
 - Kontaminationen
 - Stauung
 - Hämolyse
 - Verdünnung
- Probentransport
 - Zeit
 - Zustand des Probenmaterials (hämolytisch, ikterisch, lipämisch)
 - Temperatur
- Probenvorbereitung
- ☐ Haltbarkeit der Probe

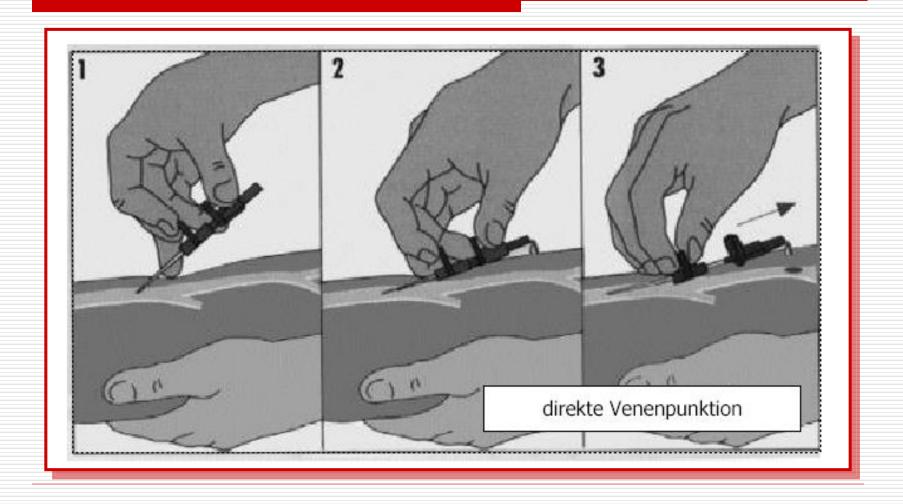
Desinfektion der Punktionsstelle

- ➤ Gründliche Reinigung der Haut
- ➤ Richtige Auswahl des Desinfektionsmittels
- > Hautareal muss sichtbar benetzt sein
- ➤ Desinfektion zweimal durchführen
- ➤ Einwirkzeit einhalten (keine "Weihwasserbehandlung)
- ➤ Desinfektion mit Alkohol vosständig eintrocknen lassen

Handelsname	Inhaltsstoffe	Einwirkzeit
Dodesept N (gefärbt und farblos	Ethanol, 1-Propanol	30 Sek.
, ,	2-Propanol, 1-Propanol, 2- Biphenylol, Wasserstoffperoxid- Lösung 30 %	15 Sek.
Betaisadona Lsg.	Polyvidon-Jod-Komplex	trocknen lassen

Anlegen der Staumanschette:


- ➤ Handbreit oberhalb der Punktionsstelle
- ➤ Venösen Blutfluss unterbinden, nicht arteriellen
- ➤ Ehestmöglich Stauung aufheben, um Verfälschung des Ergebnisses zu vermeiden (Stauzeit ≤ 1 Minute)



Venenpunktion

 Regio cubitalis anterior (Ellenbeuge)

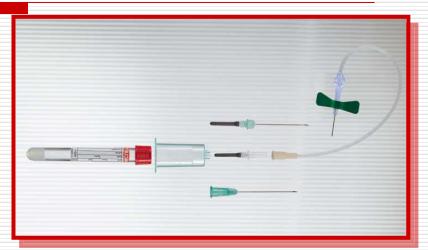
Handrücken oder Unterarm

Nadelstärke

- "Gelbe" Nadeln: 20 G (0,090 mm Ø): Bei der Verwendung von Nadeln mit einem großen Durchmesser kann es auf Grund des verstärkten Blutflusses zu Turbulenzen kommen, wodurch die Wahrscheindlichkeit der Hämolyse größer ist.
- **"Grüne" Nadeln:** 21 G (0,80 mm Ø): Diese Nadelstärke ist die am häufigsten verwendete. Sie erlaubt eine guten Blutfluss. Sowohl Turbulenzen als auch Scherkräfte halten sich in Grenzen, so dass die Wahrscheinlichkeit der Hämolyse sich in Grenzen hält.
- "Schwarze" Nadeln: 22 G (0,70 mm Ø): Diese Nadelstärke sollte nur bei Neugeborenen und kleinen Kindern verwendet werden, wenn die Venen sehr zart und fragil sind (z. B. bei onkologischen und alten Patienten, bei den Venen des Handrückens, etc.) und wenn nur eine geringe Menge Blut abgenommen werden soll. Durch das geringe Lumen der Nadel kommt es zu verstärkten Scherkräften, wodurch die Gefahr der Hämolyse steigt.

In den National Committee for Clinical Laboratory Standards H3-A5 (Procedures for the Collection of Diagnostic Blood Specimens by Venipuncture) wird folgende Reihenfolge der Abnahmegefäße empfohlen:

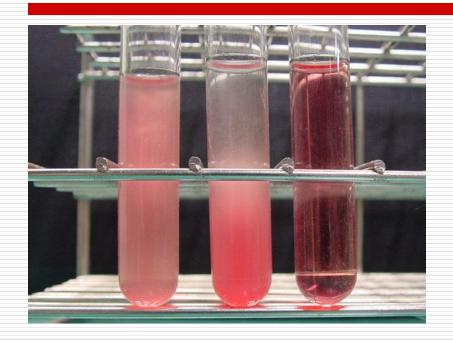
- 1. Blutkultur
- 2. Ein Röhrchen, das keinen Zusatz beinhaltet (Nativröhrchen, Serumröhrchen)
- 3. Gerinnungsröhrchen
- 4. Röhrchen mit einem Gel-Separator und Clotaktivator
- 5. Heparin-Röhrchen
- 6. EDTA Röhrchen
- 7. Glukose Röhrchen (z.B. Na-Fluorid/K-Oxalat Röhrchen)


Achtung !!

Röhrchen, die einen gerinnungshemmenden Zusatz haben, müssen 3 – 5mal vorsichtig kopfüber geschwenkt werden.

Die häufigsten Fehler

Hämolyse


- >Zu kleine und fragile Venen
- >Abnahme im Bereich eines Hämatoms
- >Zu frihe Venenpunktion nach Alkoholdesinfektion
- Zu dünne oder zu dicke Nadel
- >Schlechte Verbindung zwischen den einzelnen Teilen des Blutabnahmebestecks
- >Unterfüllte Röhrchen (manche Zusätze können in zu hoher Konzentration zur Hämolyse führen)
- >Abnahme mit einer Spritze (zu heftiges Aspirieren)
- >Abnahme aus Kathetern mit Vakuumsystem (Turbulenzen bei großlumigen Kathetersystemen)
- >Zu lange Stauzeit und Manipulation
- ►Abnahme am rechten Arm > Abnahme am linken Arm

Veränderung von Parameter durch zu lange Stauung:

- 1. <u>Kalium</u> (Pseudohyperkaliämie): Kontraktion der Unterarmmuskulatur und Freisetzung von Kalium aus intrazellulären Quellen, bedingt durch Depolarisation von Muskeln durch zu lange Stauung
- Konzentrationserhöhung von Proteinen, proteingebundenen und korpuskulären Bestandteilen des Blutes durch Hämokonzentration (Stauzeit 1 Minute – Konzentrationserhöhung um 5 % des Ausgangswertes

Hämolyse

Zerstörung von Erythrozyten

Wenn der Blutkuchen nicht vom Plasma/Serum getrennt wird (<3 Stunden)

Temperatureinflüsse während des Transportes (Heizkörper, Kühlschrank, Sonne, Gefrierschrank)

Hämolyse

Falsch hohe LDH, GOT, GPT, SP und

falsch hohes Kalium

LDH-Konzentration in den Erythrozythen 360fach höher als im Plasma

Hämolyse von 0,8 g Hb/l verursacht LDH-Anstieg um 58 %

Hämolyse

Durch Hämolyse von 2,5 g Hb/l ändern sich folgende Parameter

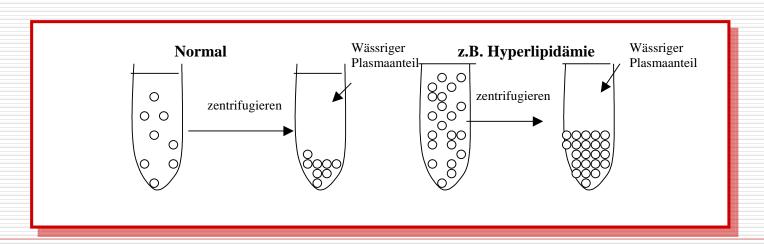
Alkalische Phosphatase	- 18 %
------------------------	--------

GOT (AST) + 35 %

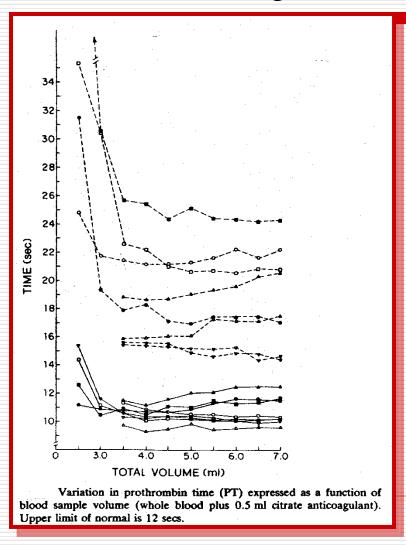
Bilirubin - 12 %

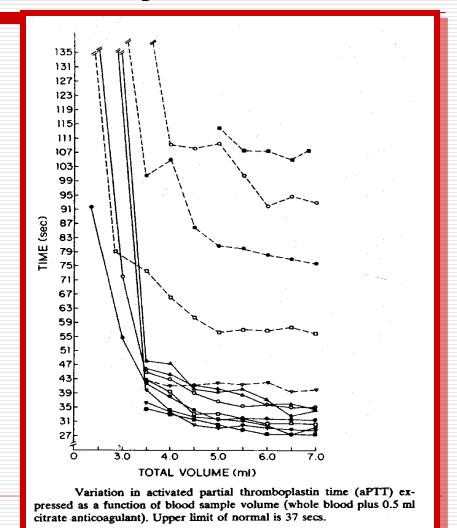
GGT - 22 %

Kalium + 14 %

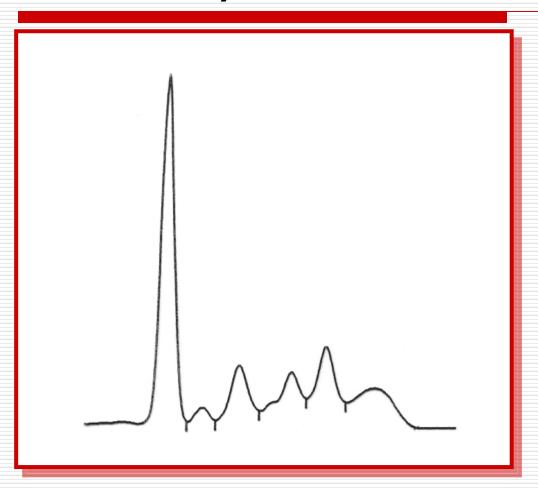

LDH + 149 %

SP + 13 %


Lipämie


Pseudohypokaliämie und Pseudohyponatriämie:

Durch das von makromolekularen Lipiden eingenommene Volumen wird der ermittelte Messwert bezogen auf das gesamte Probenvolumen vermindert



Änderung von APTT und PZ in Abhängigkeit vom Mischungsverhältnis Patientenprobe/Citrat

Präanalytischer Fehler

Heparin-Plasma statt Serum als Material verwendet.

Fibrinogen: 365 mg/dl

Änderung der Glucosekonzentration in Abhängigkeit vom Material und der Methode

				arteri	ell	
			Vol	blut	Plasma	
			Hämolysat	deproteinisiert	nativ	deproteini- siert
		Hämolysat	77 85	77 90	77 95	77
	Vollblut	deproteinisiert	85	90	95 82	82
Venös	Venös Plasma	Nativ	85	87 90	95	87
		deproteinisiert	92 85	90	92 95	92

Die häufigsten Fehler

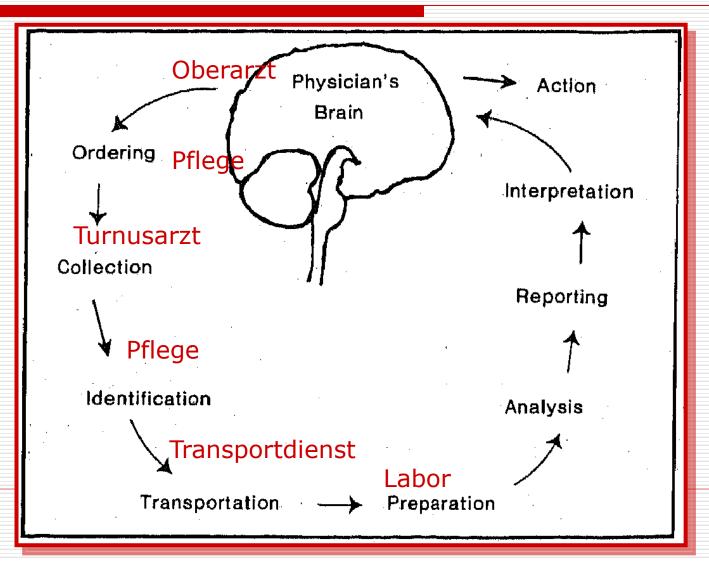
Falsches Probenmaterial

Welches Probenmaterial wofür?

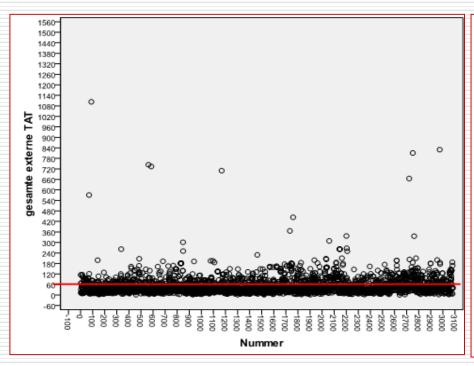
Serum	Gerinnungsaktivator	Bestimmungen in Serum in der klinischen Chemie, mikrobiologische Serologie, Immunologie, TDM
Serum Gel	Gerinnungsaktivator und Gel	Bestimmungen in Serum in der klinischen Chemie, mikrobiologische Serologie, Immunologie, TDM
Plasma	Natrium Heparin Lithium Heparin Ammonium Heparin	Bestimmungen in heparinisiertem Plasma in der klinischen Chemie
Plasma Gel	Lithium Heparin und Gel	Bestimmungen in heparinisiertem Plasma in der klinischen Chemie
		I
EDTA	K₂ EDTA K₃ EDTA	Bestimmungen in EDTA-Vollblut in der Hämatologie

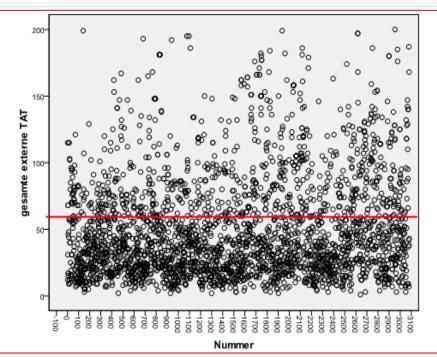
Gerinnung	Zitrat Lösung (3.2%) Zitrat Lösung (3.8%)	Bestimmungen in Zitrat-Plasma in der Hämostaseologie

Glukose Anticoagulanz Bestimmungen von Glukose und Laktat in stabilisiertem und antikoaguliertem Vollblut

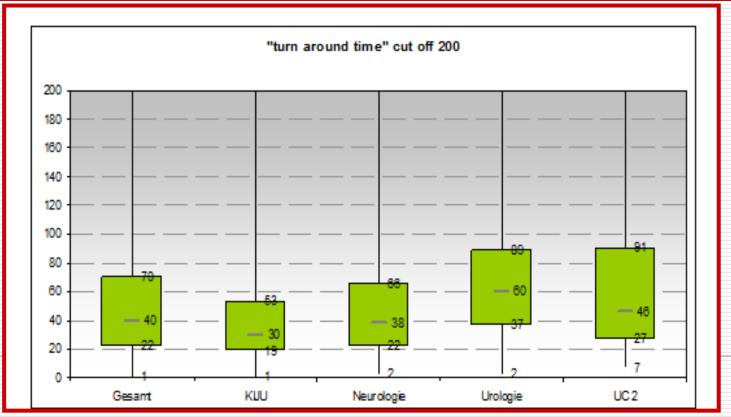

Die häufigsten Fehler

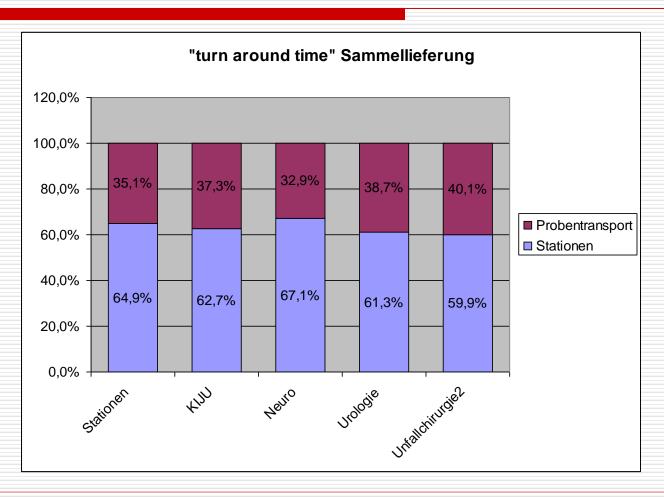
- Patientenverwechslung
 - NIE unbeschriftete Röhrchen abnehmen
 - Vor der Abnahme die Patientenidentität überprüfen (Frage: "Wie heißen Sie?")
 - Patientenidentität mit Röhrchenbeschriftung überprüfen


Störfaktoren

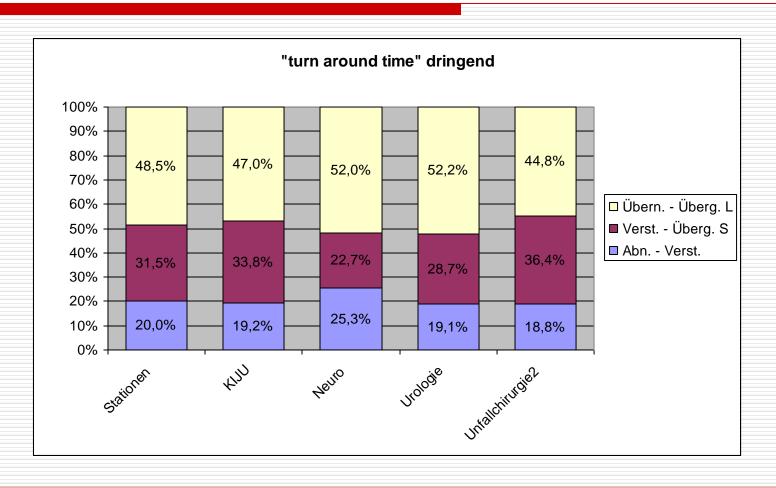

- Probenabnahme
 - Kontaminationen
 - Stauung
 - Hämolyse
 - Verdünnung
- Probentransport
 - Zeit
 - Zustand des Probenmaterials (hämolytisch, ikterisch, lipämisch)
 - Temperatur
- Probenvorbereitung
- ☐ Haltbarkeit der Probe

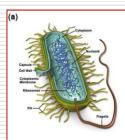
Brain-to-Brain turnaround time loop (G. D. Lundberg)

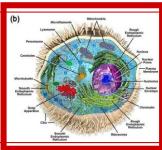

Externe Turn around Zeit



Externe Turn around Zeit


Statistics	Gesamt (n= 2893)	KIJU (n= 1035)	Neurologie (n= 1059	Urologie (n= 624	UC 2 (n= 175)
Median	40	30	38	60	46
Q 1	22	19	22	37	27
Min	1	1	2	2	7
Max	1103	1103	811	262	830
Q 3	70	53	66	89	91


Externe Turn around Zeit (Routineproben)

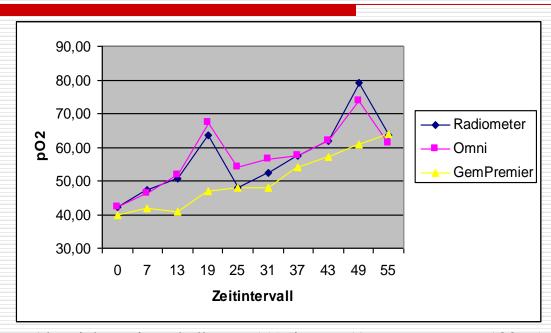


Externe Turn around Zeit ("Notfall")

Zellen

<u>**Atmen**</u> = Verbrauchen Sauerstoff

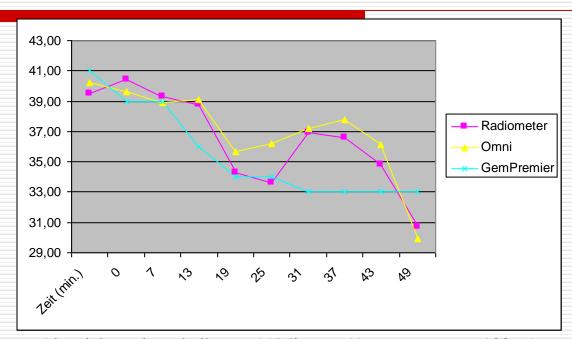
"Essen" = Verbrauchen Glucose, produzieren Laktat



							SBE	ľ
		29.10.2008	29.10.2008	30.10.2008	30.10.2008		SBIC	ı
		14:00	23:30	07:00 1.)	22:30		Temperatur	ţ
CHEMIE							pH / Blutgase	Ţ
BUN	mg/dl	11		10				İ
Chlorid	mmol/l	101		103		_		=
Glukose i.S.	mg/dl	95		54				
Harnsäure	mg/dl			11.4	Refe	re	nzbereich:	
Kalium	mmol/l			4.3				
Kalzium	mmol/l	2.4		2.2	60 -	1	10 mg/dl	
Kreatinin	mg/dl	0.9		1.0				
Magnesium	mmol/l	0.7		0.8				
Natrium	mmol/l	138		139				
Phosphor	mmol/l	1.1		0.7				

BLUTGASA	NALYSE		
O2-Sättigung	%	25.4	92,0 - 96,0
PCO2	mm Hg	61.1	35,0 - 45,0
PO2	mm Hg	19.7	74,0 - 108,0
SBE	mmol/l	3.8	-2,0 - 3,0
SBIC	mmol/l	24.2	22,0 - 26,0
Temperatur	o C	37.0	
pH / Blutgase	-	7.31	7,35 - 7,45

Blutgase


Veränderung von pO2 im Kontrollmaterial

% Abweichung innerhalb von 55 Minuten (Ausgangswert = 100 %):

	Kontrollmaterial	Pool
Radiometer:	50 %	28 %
Omni:	45 %	33 %
GemPremier	60 %	66 %
Opti	n. d.	29 %
MW	52 %	39 %

Blutgase Veränderung von pCO2 im Kontrollmaterial

% Abweichung innerhalb von 55 Minuten (Ausgangswert = 100 %):

	Kontrollmaterial	Pool
Radiometer:	- 22 %	- 6 %
Omni:	- 26 %	- 5 %
GemPremier	- 20 %	- 12 %
Opti	n. d.	- 10 %
MW	- 23 %	- 8 %

Folgen einer verlängerten TAT

Ursache für pO2 und pCO2 Veränderung

Gasaustausch mit der Umgebungsluft:
 Umgebungsluft
 Venöses Blut
 pO2 160 mm Hg
 40 mm Hg
 pCO2 0,25 mm Hg
 46 mm Hg

2. Verbrauch von O2, bzw. Produktion von CO2 durch die Blutzellen

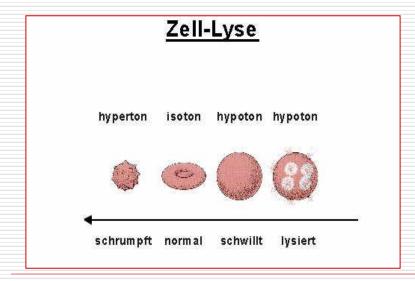
Nach 15 Minuten haben die Werte des Probenmaterials nichts mehr mit den Werten des Patienten zu tun!!!!

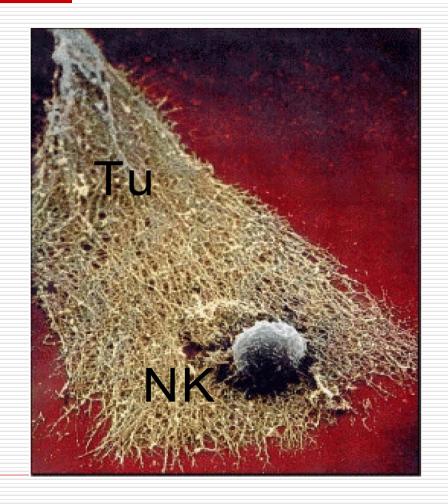
Blutglucose

Änderung in der Zeit um bis zu 40 % und mehr durch Verbrauch der Glucose durch die Blutzellen

falsch niedrige Werte

Gleichzeitig Produktion von Laktat


falsch hohe Werte


Probenmaterial mit Glykolysehemmer versetzen!!!

Zellen

Durch das "Stoffwechseln" der Zelle ändert sich das Milieu in der Probe (Änderung von pH, Nährstoffmenge, etc.)

Zellen

Liquor:

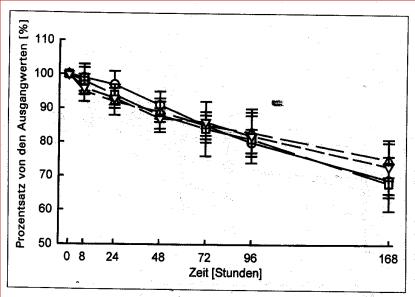
- Entzündung
- Bösartiges Geschehen (Tumore, Leukämie)

Referenzwertebereich:

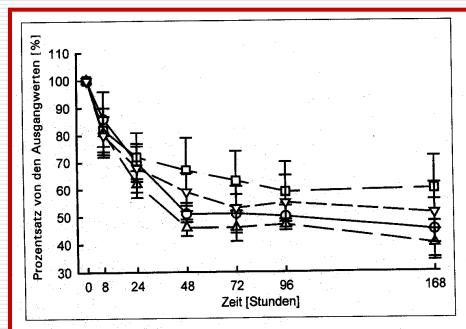
Erythrozyten: Im Normalliquor nicht vohanden.

Anmerkungen:

Nach 2-stündiger Lagerung der Liquorprobe bei Zimmertemperatur nimmt die Zellzahl durch Autolyse unkontrollierbar ab. Die Autolyse betrifft insbesondere die Granulozyten. Lymphozyten zeigen eine wesentlich größere Stabilität.


Probenlagerung

- 1. Änderung von Gerinnungsparametern
- 2. Änderung von hämatologischen Parametern
- 3. Änderung von Elektrolyten
- 4. Änderung von Gesamtprotein, Harnsäure, etc


Lagerungsdauer und Lagerungsbedingungen (Gerinnung)

- □ Verarbeitung innerhalb von 4 Stunden (Raumtemperatur 15° bis 25°)
- Ausnahme F VIII innerhalb 2 Stunden
- Werden Proben für Gerinnungsuntersuchungen eingefroren, ausschließlich Plättchen-freies-Plasma verwenden (2. Zentrifugation ohne Buffy-coat, erneutes Abheben von Plasma)
- □ Nichtbeachtung führt auch und besonders bei Thrombophilie-Screening (APC Resistenz, Prot. C, AT III) zu Fehlerergebnissen

Änderung von Gerinnungsparametern

Abb. 1 Thromboplastinzeit (Prothrombinzeit), Lagerung bei: ⊖ Raumtemperatur von gesunden Probanden, die nicht mit Heparin therapiert wurden; ⇔ bei 6° C, von gesunden Probanden, die nicht mit Heparin therapiert wurden; ⊖ Raumtemperatur von Patienten, die mit Heparin behandelt wurden; ∀ bei 6° C, von Patienten, die mit Heparin behandelt wurden

Abb. 6 Faktor VIII, Lagerung bei: → Raumtemperatur von gesunden Probanden, die nicht mit Heparin therapiert wurden; → bei 6° C, von gesunden Probanden, die nicht mit Heparin therapiert wurden; → Raumtemperatur von Patienten, die mit Heparin behandelt wurden; → bei 6° C, von Patienten, die mit Heparin behandelt wurden

Änderung von Elektrolyten

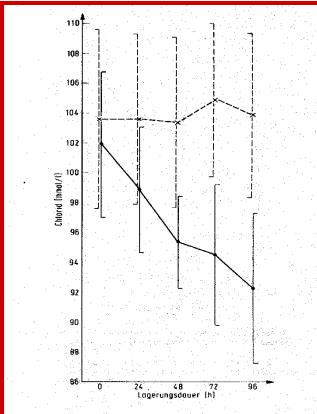


Abb. 4. Anderung der Chloridwerte von Heparinblut/Plasmaproben (12 nierengesunde Probanden) bei Lagerung bis zu 96 h bei 25°C.

Aufgetragen sind die Mittelwerte mit Streuungen (1 s) von gelagerten Blutproben (. – .) und die Mittelwerte von gelagerten Plasmaproben (x – – x).

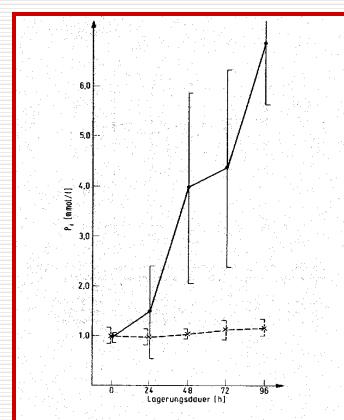


Abb. 5. Änderung der Phosphatwerte von Heparinblut/Plasmaproben (12 nierengesunde Probanden) bei Lagerung bis zu 96 h bei 25 °C.

Aufgetragen sind die Mittelwerte mit Streuungen (1 s) von gelagerten Blutproben (...) und die Mittelwerte von gelagerten Plasmaproben (x---x).

Änderung von Gesamtprotein und Harnsäure

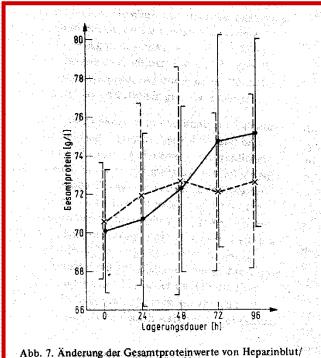


Abb. 7. Anderung der Gesamtproteinwerte von Heparinblut/
Plasmaproben (12 hierengesunde Probanden) bei Lagerung bis zu 96 h bei 25 °C.

Aufgetragen sind die Mittelwerte mit Streuungen (1 s) von gelagerten Blutproben (.-.) und die Mittelwerte von gelagerten Plasmaproben (x---x).

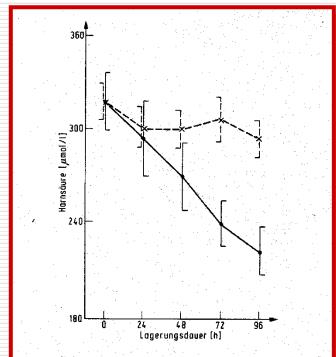
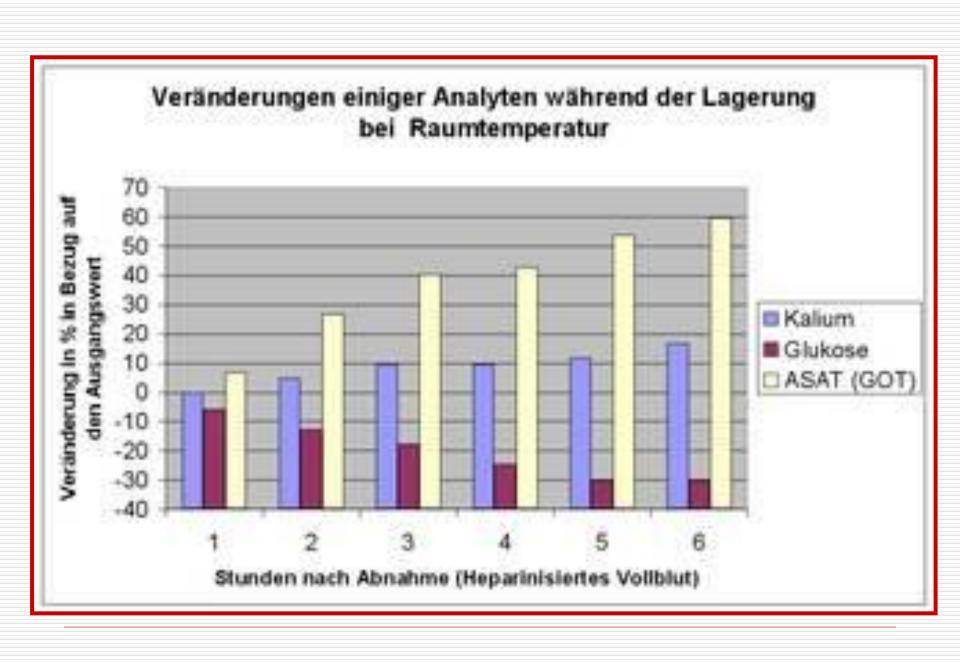
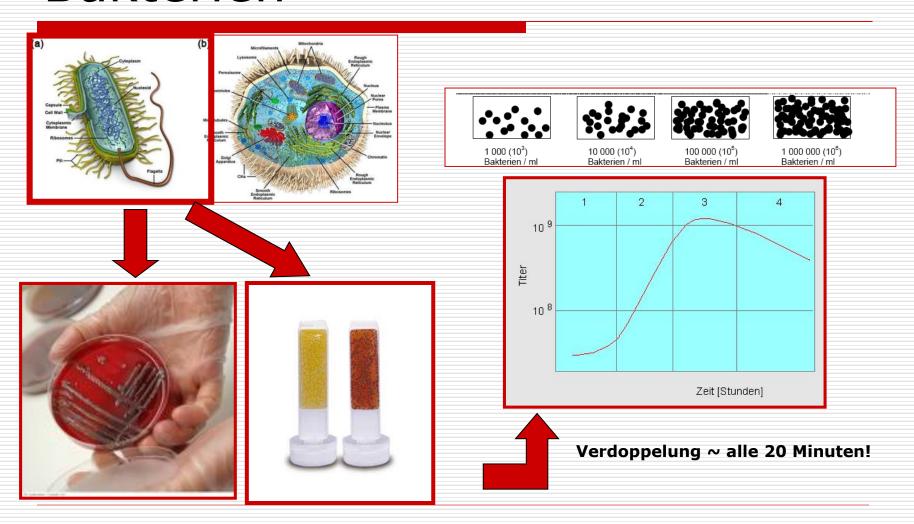



Abb. 10. Änderung der enzymatisch bestimmten Harnsäurewerte von Heparinblut/Plasmaproben (12 nierengesunde Probanden) bei Lagerung bis zu 96 h bei 25 °C.


Aufgetragen sind die Mittelwerte mit Streuungen (1 s) von gelagerten Blutproben (. – .) und die Mittelwerte von gelagerten Plasmaproben (x – – x).

Änderung von hämatologischen Parametern

Zeit	Lympho	Mono	Neutro	Eo	Baso
0 min	46,7	6,1	43,9	3,4	0,04
30 min	43,3	5,7	49,9	4,0	0,04
1 Std	44,3	5,6	46,5	3,5	0,06
2 Std	44,3	5,5	46,4	3,8	0,00
4 Std	46,0	5,8	44,6	3,6	0,68
24 Std	49,8	5,5	36,1	3,1	5,42
48 Std	62,0	4,7	27,6	2,4	3,24

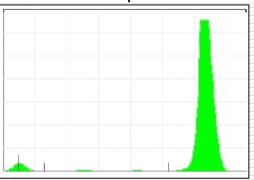
Bakterien

Harnwegsinfekt

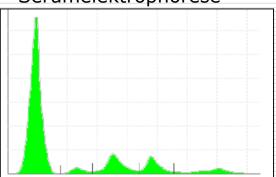
- □ Nitrit:
 - □ Nitrat→ bakterielle Reduktion im Urin→Nitrit
 - Nitrit negativ trotz Harnwegsinfekt
 - Kein Nitrat in der Nahrung, Erbrechen, Hunger
 - Fehlende Nitratausscheidung (Frühgeborene und Neugeborene)
 - Weniger als 10⁵/ml Urin Kolonie bildender Bakterien
 - Infektion mit Bakterien, die kein Nitrit aus Nitrat bilden (z.B. Staphylokokken, Enterokokken)

Harnwegsinfekt

Protein:


Vor allem spezifisch auf Albumin (und Globuline). Mucoproteine wenig empfindlich. Paraproteinurie wird nicht erfasst!!

Beispiel: 76 Jahre alte Patientin; Knochenschmerzen, Gewichtsabnahme


Harnstatus:

Harnstatus			
Bilirubin/H	Negativ		
Ery/H	33	0 - 10	/µl
Glukose/H	Negativ		
Keton/H	Negativ		
Leuko/H	25	0 - 25	/µl
Nitrit/H	Negativ		
Protein/H	70	0 - 20	mg/dl
Spez. Gew.	1.014	1.016 - 1.022	g/ml
Harn quantitativ			
Ges. Eiweiß/H	574		mg/dl

Serumelektrophorese

Befundinterpretation

□ Störfaktoren

91 Jahre alter Patient, 3. Tag nach Herzinfarkt

			<u>Referenzbereiche</u>
CK		89 U/I	< 100 U/I
CK-N	⁄IB	15 U/l	< 10 U/l und < 6% d. Gesamt CK
LDH		753 U/l	120 – 240 U/l
<u>30 mi</u>	n späte	<u>r:</u>	
CK		127 U/l	Droha hämalytiaah
CK-M	⁄IB	78 U/l	Probe hämolytisch
LDH		1560 U/l	

Beispie

Parameter		Einheiten	Referenzbereich
Elektrolyte			
Na	164	mmol/l	135-145
K	1,11	mmol/l	3,5-5,0
Cl	135	mmol/l	95-105
Ca gesamt	0,41	mmol/l	2,00-2,60
Substrate			
Glucose	68	m/dl	70-115
Creatinin	0,7	mg/dl	0,6-1,3
Harnstoff	31	mg/dl	10-50
Harnsäure	2,0	mg/dl	3,4-7,0
Enzyme			
CK	-4	U/l	10-100
GOT (ASAT)	3	U/l	<19
GPT (ALAT)	3	U/l	<23
GGT	5	U/l	<19
LDH	58	U/l	120-240
СНЕ	358	U/l	3000-9000
AP	43	U/1	55-170
Lipase	54	U/l	0-190
Pankreas-Amylase	6	U/l	0-64
Fette			
Triglyceride	28	mg/dl	70-150
Cholesterin	18	mg/dl	50-200
Serumproteine			
Albumin	0,4	g/dl	3,5-5,0
Gesamteiweiß	1,1	g/dl	6,6-8,7

Probe mit physiologischer Kochsalzlösung verdünnt

Beispiel 1

	Einheiten	Referenzbereich
141	mmol/l	135-145
4,6	mmol/l	3,5-5,0
98	mmol/l	95-105
7	m/dl	70-115
10	U/l	<19
14	U/l	<23
15	U/l	<19
178	U/l	120-240
4660	U/l	3000-9000
169	U/1	55-170
en		
0,25	m/dl	0,10-1,20
	4,6 98 7 10 14 15 178 4660 169	141 mmol/l 4,6 mmol/l 98 mmol/l 7 m/dl 10 U/l 14 U/l 15 U/l 178 U/l 4660 U/l 169 U/l

Probe 24 Stunden unzentrifugiert im Kühlschrank gelagert

#I				
Parameter		Einheiten	Referenzbereich	
Leuko	2,0	G/1	4,00-10,00	
Ery	0,26	T/1	3,80-5,50	
Нb	0,9	g/dl	12,0-18,0	
Hkt	2,4	%	36,0-53,0	
MCV	92,1	fl	80,0-98,0	
MCH	36,6	pg	26,0-32,0	
MCHC	39,7	g/dl	32,0-37,0	
Thrombo	33	G/1	140–430	

2.6. Präanalytischer Fehler, Verdünnung mit Infusionslösung (Ciproxin i.v.) Infusion am Handrücken, Blutabnahme am selben Arm in der Ellenbeuge

Anmerkung:

Bei der automatischen Blutbildmessung werden die Zellen nach ihrer Größe und nach ihrer Granulierung den einzelnen Populationen zugeteilt. Da das Gerät jedoch nicht unterscheiden kann, ob das detektierte Teilchen eine Zelle oder ein anderes Gebilde ist, werden auch nicht-zelluläre Teilchen den entsprechenden Blutsubpopulationen zugeteilt. Ciproxin war im Blutbildröhrchen als feine Granulierung zu erkennen. Das vorliegende Blutbild ist also einerseits auf die Verdünnung zurückzuführen. Andererseits ist es durchaus möglich, dass "Ciproxinkügelchen" z.B. bei den Leukozyten mitgezählt wurden.

2.8. Präanalytischer Fehler

Parameter		Einheit	Referenzbereich	
Leuko	2,82	G/1	4,00-10,00	
Ery	3,66	T/1	3,80-5,50	
Hb	13,8	g/d1	12,0-18,0	
Hkt	31,5	%	36,0-53,0	
MCV	86,1	fl	80,0-98,0	
MCH	37,7	pg	26,0-32,0	
MCHC	43,8	g/d1	32,0-37,0	
Thrombo	190	G/1	140-430	

Anmerkung:

Die Probe wurde in einer Kühlbox verschickt und war tiefgefroren. Da bei der Blutbildmessung Vollblut verwendet wird, kann eine Hämolyse nur schwer erkannt werden. Am ehesten noch daran, dass die Probe ein "lackähnliches" Aussehen hat. Durch das Tieffrieren werden nicht nur die Erythrozyten zerstört, sondern alle zellulären Bestandteile, was zu Veränderungen in allen Populationen führt.

Parameter		Einheiten	Referenzbereich	
Elektrolyte:				
K	5,9	mmol/l	3,5-5,0	
Substrate:				
Glucose	107	m/dl	70-115	
Creatinin	0,9	mg/dl	0,6-1,3	
Harnstoff	25	mg/dl	10-50	
Harnsäure	3,6	mg/dl	3,4-7,0	
Enzyme:				
CK	14	U/1	10-100	
GOT (ASAT)	17	U/1	<19	
GPT (ALAT)	25	U/1	<23	
GGT	14	U/1	<19	
LDH	406	U/1	120-240	

2.9. Präanalytischer Fehler; Probe hämolytisch

Parameter		Einheit	Referenzbereich	
Gesamteiweiß	120	mg/l	0,00-130,00	
Albumin	23,60	mg/l	0-30	
α1 Mikroglobulin	104,0	mg/l	0,01-12,0	
Transferrin	2,8	mg/l	0-2,4	
Lambda Leichtketten	73	mg/l	0,75-4,50	
Kappa Leichtketten	73,2	mg/l	0,75-4,50	
IgG	58,50	mg/l	0-10	
Harnsäure	8372	mg/24 h	Männer: 330-800	
			Frauen: <750	

Falsch niedrige Gesamteiweißbestimmung bei hoher Harnsäurekonzentration

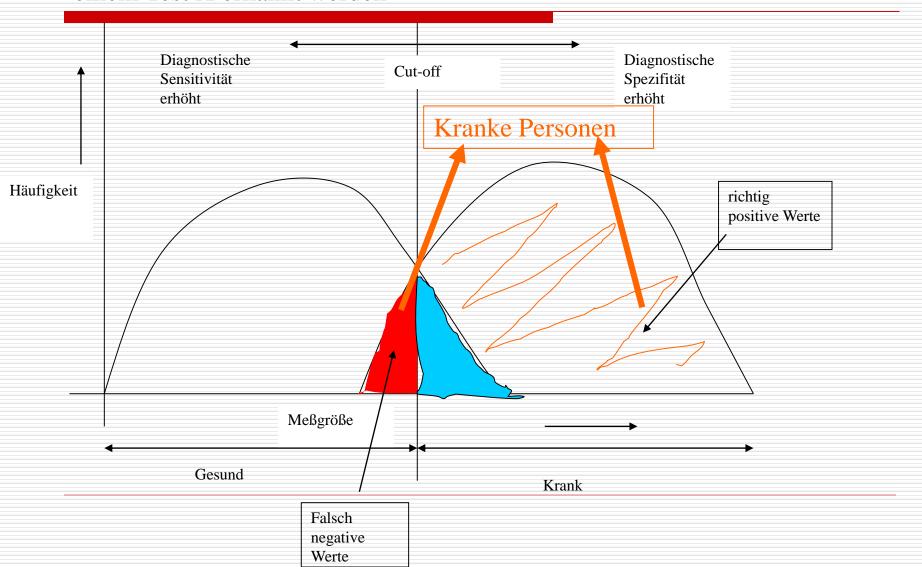
Anmerkung:

Es handelt sich beim vorliegenden Befund um einen 24 Stunden Harn. Die Summe der hier bestimmten Einzelproteine beträgt 335,1 mg/l. Dabei muss berücksichtigt werden, dass andere Proteine, die ebenfalls im Harn ausgeschieden werden (z.B. Tamm-Horsefall Protein) nicht bestimmt wurden, also angenommen werden kann, dass die Summe der Einzelproteine noch höher wäre. Die Gesamteiweißbestimmung ergibt mit 120 mg/l nicht einmal die Hälfte der Summe der Einzelproteinbestimmungen. Dieses Problem ist vor allem dann von Relevanz, wenn zur Beurteilung einer Nierenfunktion nur die Gesamteiweißbestimmung als Screeningmethode herangezogen wird.

Kenngrößen

- Parameterspezifische Kenngrößen
- Methodenspezifische Kenngrößen
- Personenspezifische Kenngrößen

Kenngrößen

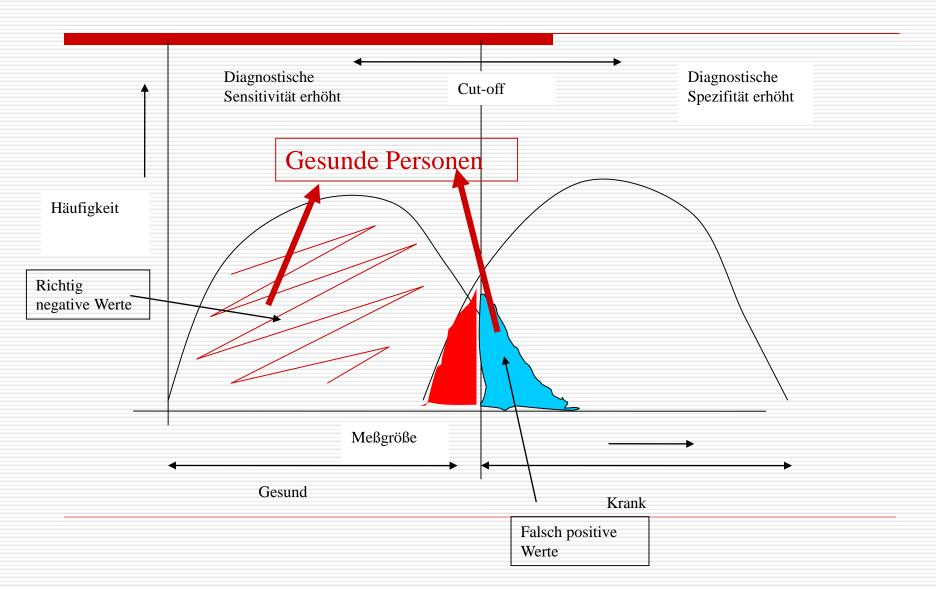

- Parameterspezifische Kenngrößen
- Methodenspezifische Kenngrößen
- Personenspezifische Kenngrößen

Parameterspezifische Kenngrößen

- Diagnostische Sensitivität:
- □ Definition:
 - Gibt an, wie groß die Wahrscheinlichkeit ist, mit der bei Kranken ein positives Testergebnis erhalten wird.
- □ Formel:
 - = [Anzahl richtig positiver Ergebnisse/(Anzahl richtig positiver + falsch negativer Ergebnisse)] x 100

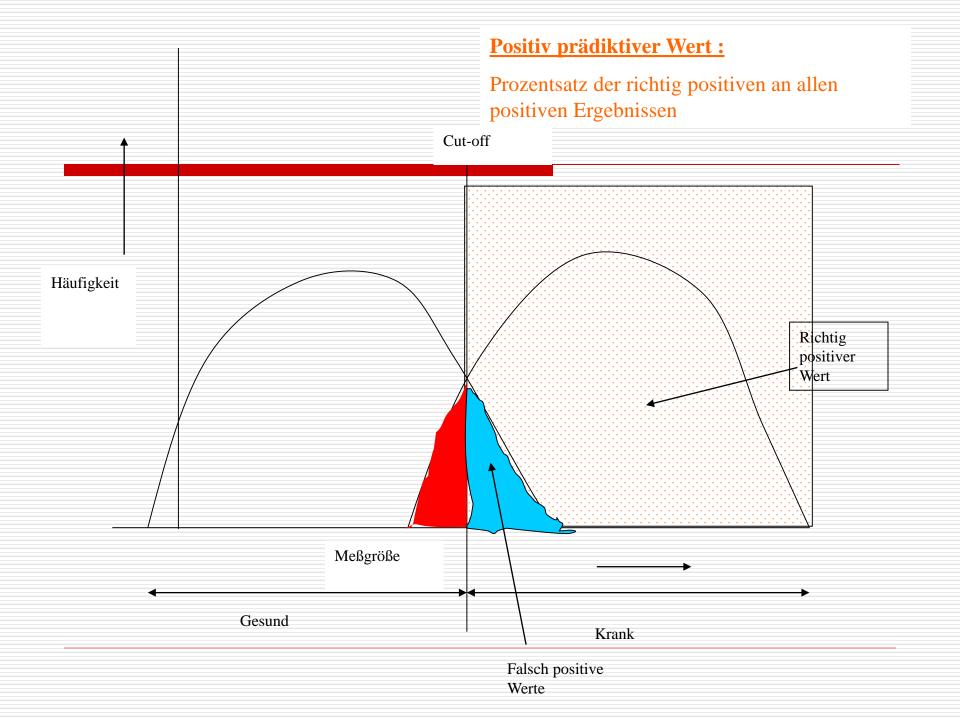
Diagnostische Sensitivität:

Gibt den Prozentsatz der Kranken an der Gesamtheit der Kranken an, die mit einem Test X erkannt werden

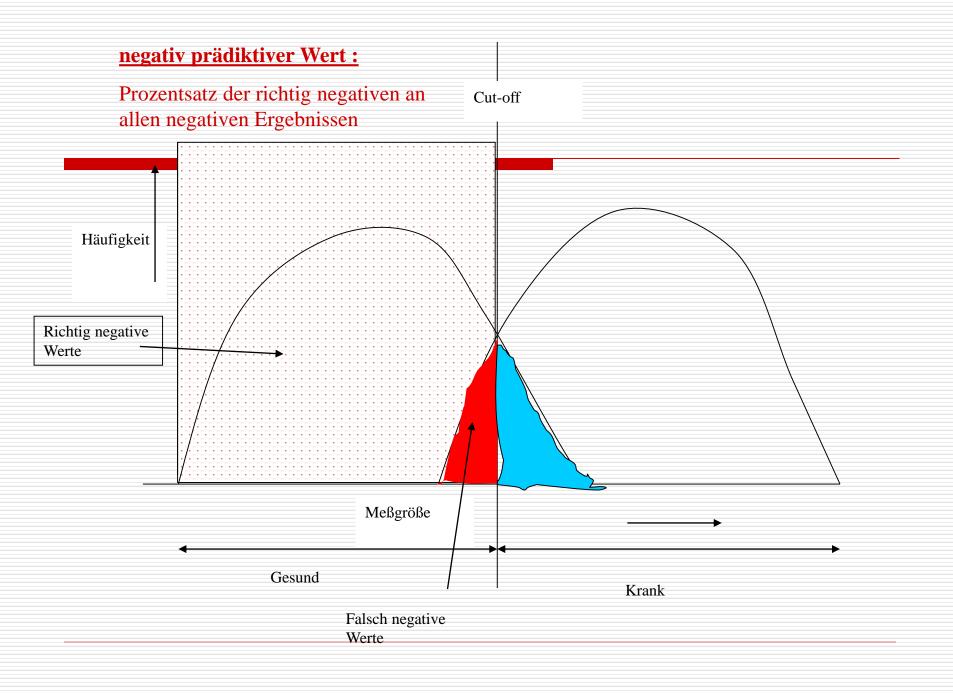


Parameterspezifische Kenngrößen

- Diagnostische Spezifität:
- Definition:
 - Gibt an, wie groß die Wahrscheinlichkeit ist, mit der bei Gesunden ein negatives Testergebnis erhalten wird.
- ☐ Formel:
 - = [Anzahl richtig negativer Ergebnisse/(Anzahl richtig negativer + positiver Ergebnisse)] x 100


Diagnostische Spezifität:

Gibt den Prozentsatz der Gesunden an der Gesamtheit der Gesunden an, die mit einem Test X erkannt werden


Parameterspezifische Kenngrößen

- Positiv prädiktiver Wert:
- □ Definition:
 - Gibt an, wie groß die Wahrscheinlichkeit ist, mit der ein Proband mit positivem Testergebnis tatsächlich die entsprechende Krankheit hat.
- ☐ Formel:
 - = [Anzahl richtig positiven Ergebnisse/(Gesamtzahl der positiven Ergebnisse*)] x 100
 - *richtig + falsch positiv

Parameterspezifische Kenngrößen

- Negativ prädiktiver Wert:
- Definition:
 - Gibt an, wie groß die Wahrscheinlichkeit ist, mit der ein Proband mit negativem Testergebnis tatsächlich gesund.
- □ Formel:
 - = [Anzahl richtig negativen Ergebnisse/(Gesamtzahl der negativen Ergebnisse*)] x 100
 - *richtig + falsch negativ

Nach dem Satz von Bayes gilt:

Positiver Vorhersagewert =

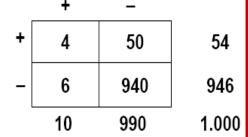
Th. Bayes, 1702-1761

Sensitivität · Prävalenz

Sensitivität · Prävalenz + (1- Spezifität) · (1- Prävalenz)

Negativer Vorhersagewert =

Spezifität · (1 – Prävalenz)


Spezifität · (1 – Prävalenz) + (1 - Sensitivität) · Prävalenz

Beispiel: Darmkrebs

Sensitivität = 40 % Spezifität = 95 % Prävalenz = 1 %

Darmkrebs

Hämoccult-Test

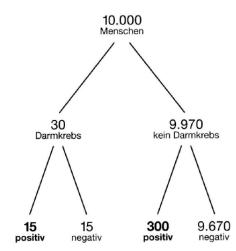


Abbildung 6.2: Dieses Baumdiagramm mit den natürlichen Häufigkeiten ergibt unmittelbar die Lösung der in Tabelle 6.1 gestellten Aufgabe. Von jeweils 315 Personen mit positivem Hämokkulttest haben 15 wirklich Darmkrebs; das entspricht einem Anteil von 4,8 Prozent.

G. Gigerenzer, 2002: Das Einmaleins der Skepsis, Berlin Verlag

Walter Lehmacher Institut für Medizinische Statistik, Informatik und Epidemiologie der Universität zu Köln

Beispiel: Screening des Prostatakarzinoms

Sensitivität, Spezifität und positiver Vorhersagewert (PW+, PPV) von Screeningmethoden

	Sensitivität	Spezifität	PPV
Rektale Palpation	56%	94%	33%
Transrektaler Ultraschall	77%	81%	29%
PSA (> 4 ng/ml)	82%	87%	40%

Effektivität von nationalen Screening-Programmen?

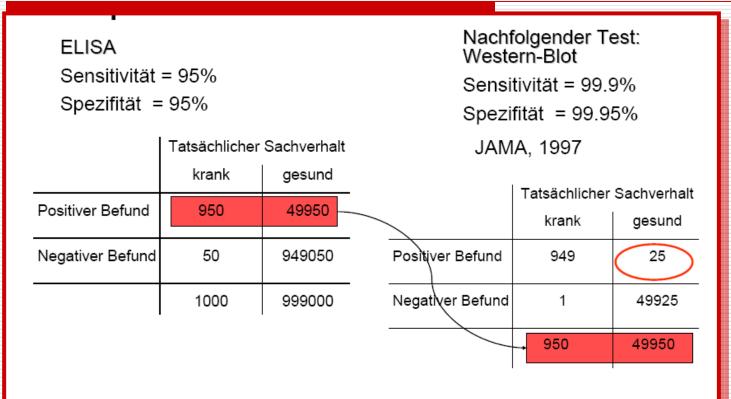
Dt. Ärzteblatt, 1999

Beispiel: HIV-ELISA Test

Sensitivität = 95%

Spezifität = 95%

Am. J. Epid., 1996


Prävalenz = 0.1%

	Tatsächlicher Sachverhalt			
	krank gesund			
Positiver Befund	950	49950		
Negativer Befund	50	949050		
	1000	999000		

Positiver Vorhersagewert = 950/(950+49950) = 1.87%

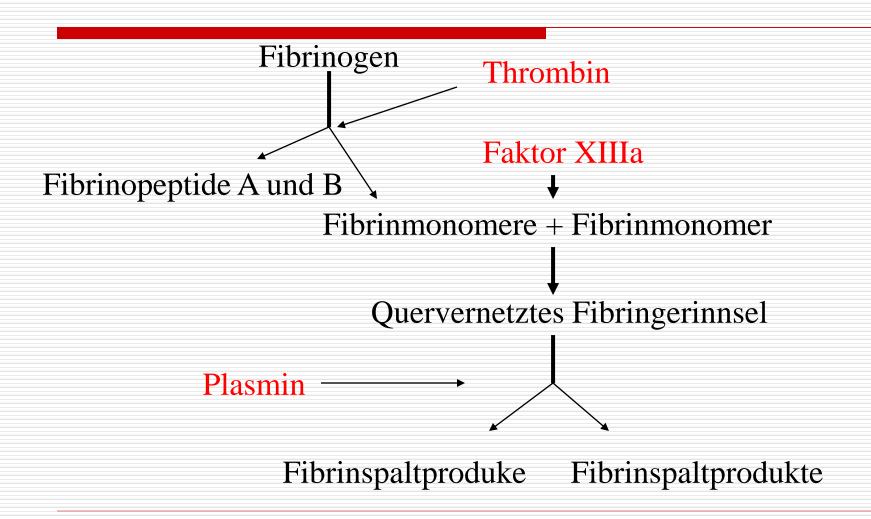
Negativer Vorhersagewert = 949050/949100 = 99.995%

Beispiel: HIV Test

Positiver Vorhersagewert = 949/(949+25) = 97.4%

Negativer Vorhersagewert = 49925/49926 = 100%

Walter Lehmacher Institut für Medizinische Statistik, Informatik und Epidemiologie der Universität zu Köln


Sensitiver Test/Spezifischer Test

- Anwendung sensitiver Tests, wenn
 - Kein Krankheitsfall übersehen werden soll
 - Krankheiten ausgeschlossen werden sollen (Ausschluss-Tests; negativer Test hilfreich, Ausschluss einer Krankheit)
- Anwendung spezifischer Tests, wenn
 - Kein Gesunder falschen Verdacht bekommen soll
 - Verdacht bestätigt werden soll (Bestätigungstest; positiver Test hilfreich, Absicherung einer Diagnose)

Beispiel

□ D-Dimer für die Diagnose einer PAE

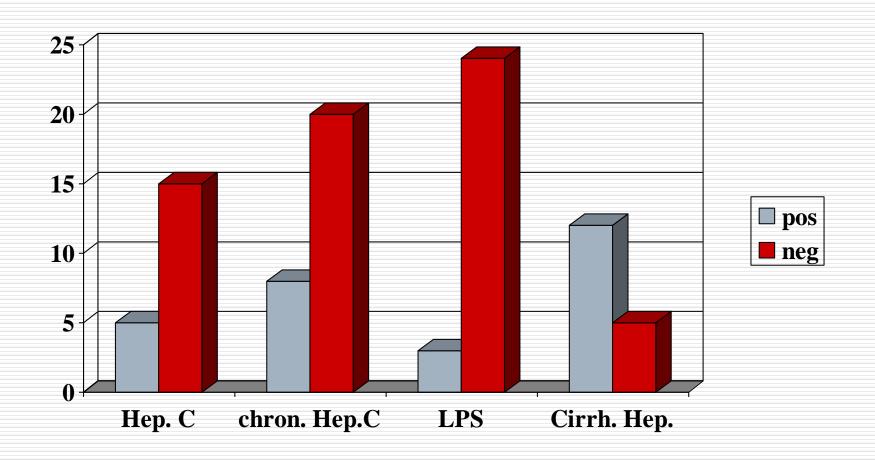
D-Dimer

D-Dimer

- Sammelbegriff für quervernetzte
 Fibrinspaltprodukte
- Zusammensetzung individuell sehr unterschiedlich
- ☐ Korrelation zwischen verschiedenen Methoden gering (Ursache: unterschiedliche monoklonale Antikörper, die bestimmte D-Dimer-Subtypen bevorzugen)

D-Dimer

- ☐ Halbwertszeit: ca. 8h
- positives D-Dimer
 - ⇒ Auflösen einer Fibrinpäzipitation
 - ⇒ Verminderte Clearence
 - bei Leberparenchymschaden


Auflösen einer Fibrinpräzipitation

- Primäre Hyperfibrinolyse ohne begleitende Gerinnungsaktivierung
- ⇒ bei Tumoren im Bereich des Urogenitaltraktes
- Sekundäre oder reaktive
 Hyperfibrinolyse (als Folge von Gerinnselbildung)
- ⇒ lokalisiert als Wundheilung oder Thrombose
- ⇒ generalisiert als disseminierte intravasale Gerinnung

D-Dimer Erhöhung

- ☐ Thromboembolisches Geschehen (TVT, PAE, ...)
- DIC
- Tumore: Organismus reagiert oft auf Tumore mit Wundheilungsreaktion (= Einbettung des Tumors in ein Fibrinnetz)
- Hyperfibrinolyse (v.a. im Rahmen von Tumoren des Urogenitaltraktes)
- Lebererkrankungen (verminderter Abbau von D-Dimer)

D-Dimer bei Lebererkrankungen

Limitationen des D-Dimers als diagnostischer Parameter bei PAE

- Geringe Spezifität: "falsch positive" Ergebnisse auf Grund anderer Erkrankungen, die mit einer D-Dimer Erhöhung einhergehen.
- Schlechte Übereinstimmung verschiedener kommerziell erhältlicher Tests (Sensitivität 89 - 100%; Spezifität 19 - 100%)

Kenngrößen

- Sensitivität und Spezifität sind feste, testabhängige Größen
- Prädiktive Werte hängen von der Prävalenz ab
 - Prävalenz ist a-priori-Wahrscheinlichkeit (vor Test Wahrscheinlichkeit; klinische Wahrscheinlichkeit)
 - Prädiktiver Wert ist a-posteriori-Wahrscheinlichkeit (nach Test Wahrscheinlichkeit)

D-Dimer Bestimmung in der Diagnose akuter venöser Thromboembolien

- Sinnvoll nur im Zusammenhang mit einer vorhergehenden klinischen
 Verdachtsdiagnose, die auf standardisierten Kriterien beruht
 - ⇒ Bei Patienten mit einer niedrigen klinischen Wahrscheinlichkeit und normalem D-Dimer ist der NPV von D-Dimer 99 %
 - ⇒ Bei Patienten mit einer hohen klinischen Wahrscheinlichkeit und normalem D-Dimer ist der NPV von D-Dimer 78%

Ginsberg et al, Ann Intern Med 1998; 129: 1006 - 1011

Patientencharakteristika, die zu Unterschieden der D-Dimer Werte führen

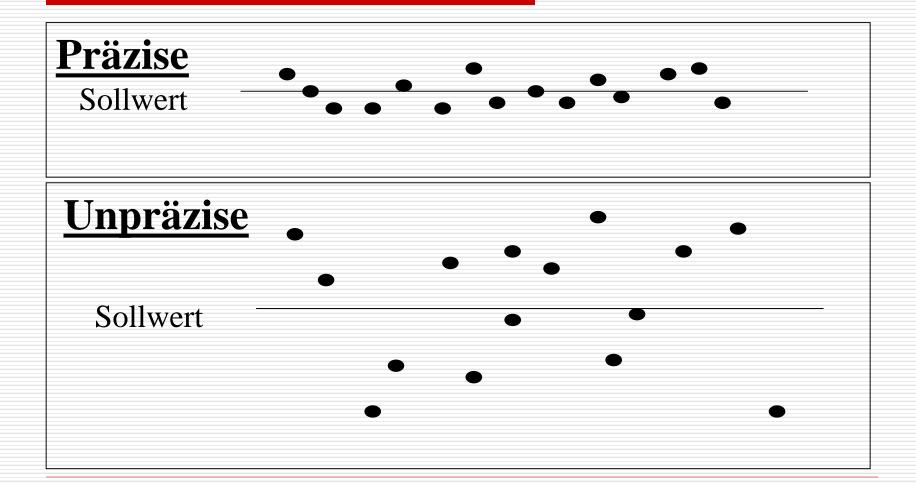
- Schwere der Erkrankung (leichtere Erkrankungen führen zu niedrigen, evtl. negativen D-Dimer Werten)
- Zeitintervall seit Auftreten der Symptome (langes Zeitintervall kann zu niedrigen, evtl. negativen D-Dimer Werten führen)
- Antikoagulatientherapie (Heparin und Coumarine supprimieren die D-Dimer Bildung)
- □ Vorliegen von Begleiterkrankungen (erniedrigt die Spezifität von D-Dimer)

Brill-Edwards & Lee, Thrombosis and Haemostasis 1999; 82: 688 - 694

Laborparameter und Organspezifität

OPGAN	Llorz	Skelettmuskulatur	Lobor	Donkroos	Nioro	Vnoohonmark
OKOAN	HEIZ	Skelettiiluskulatui	Lebel	rankicas	Niere	Kilochellillark
Parameter	•					
CK	X	X				_
CK-MB	X					
LDH	X	X	X			X
Troponin	X					
Myoglobin	X	X				
GOT	(X)		X			
GPT			X			
GGT			X			
Cholinesterase			X			
Alk. Phosphatase			X			X
Bilirubin			X			X
NH_3			X			
Amylase				X		
Lipase				X		
Creatinin					X	
Harnstoff					X	
Harnsäure					X	X
Kl. Blutbild			X		X	X
Kl. Gerinnung (PZ u.			X			
aPTT)						
Na				X	X	
K	X			X	X	
Gesamteiweiß			X		X	

Kenngrößen


- Parameterspezifische Kenngrößen
- Methodenspezifische Kenngrößen
- Personenspezifische Kenngrößen

Methodenspezifische Kenngrößen

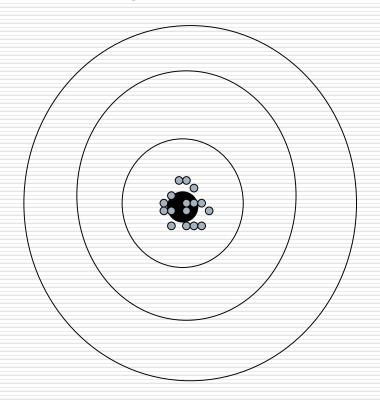
Präzision:

- Interassay Varianz: Der Unterschied der Testergebnisse, wenn X Bestimmungen aus der selben Probe in Serie gemacht wurden
- Intraassay Varianz: Der Unterschied der Testergebnisse, wenn X Bestimmungen aus der selben Probe mit unterschiedlichen Assays gemacht wurden
- Variationskoeffizient (VK oder CV): %
 Standardabweichung (SD) vom Mittelwert (MW)

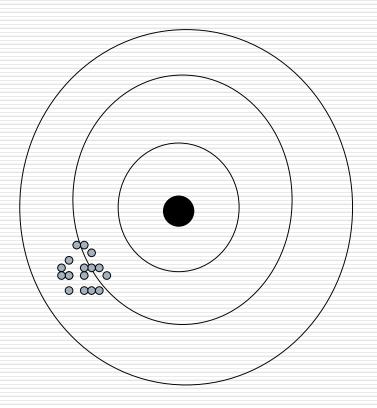
Präzision

Beispiel

- □ CV = 10 %:
 - 1. Testergebnis = 100
 - Wiederholungsmessung kann im Bereich von 90
 110 liegen, ohne dass eine pathologische Veränderung aufgetreten ist.
- □ CV = 30 %
 - 1. Testergebnis = 100
 - Wiederholungsmessung kann im Bereich von 70
 130 liegen, ohne dass eine pathologische Veränderung aufgetreten ist.

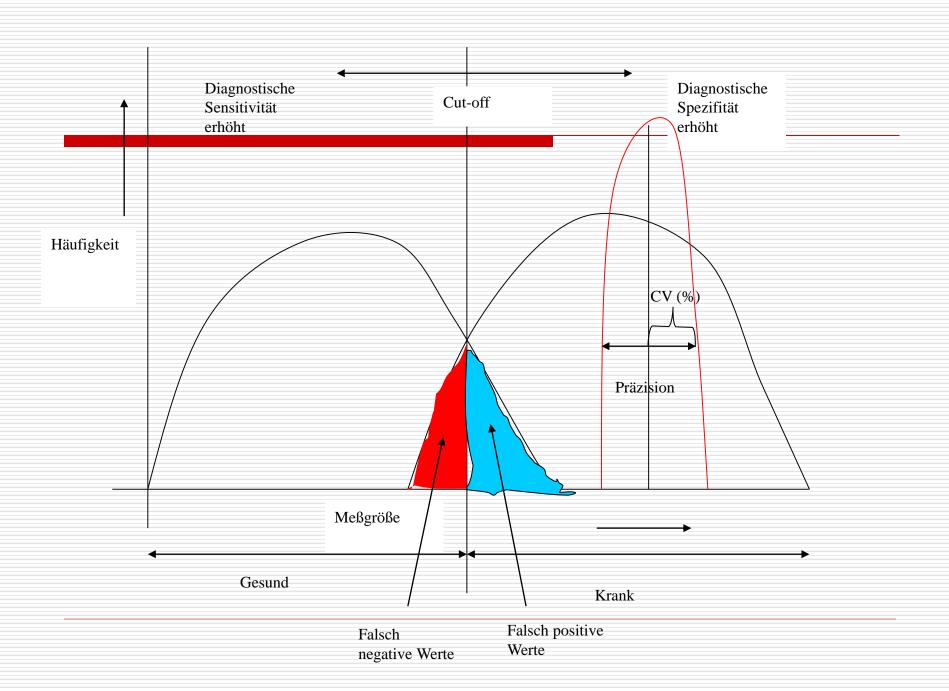

Methodenspezifische Kenngrößen

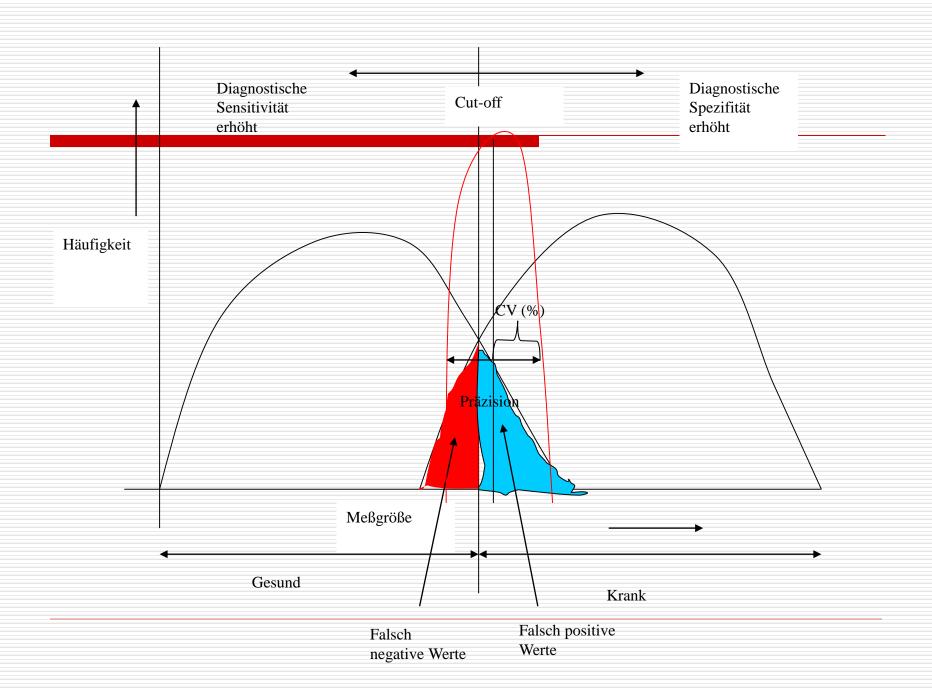
Richtigkeit:


 Unterschied zwischen dem Sollwert und dem Mittelwert der Testergebnisse

Richtigkeit

Richtigkeit hoch




Richtigkeit gering

Messunsicherheit

- Standardmessunsicherheit: entspricht der Präzision
- Kombinierte Messunsicherheit: Funktion aus Präzision und Richtigkeit
- □ Erweiterte Messunsichheit: kombinierte Messunsicheheit x 1,96: umfasst der 95 %ige Konvidenzintervall

Kenngrößen

- Parameterspezifische Kenngrößen
- Methodenspezifische Kenngrößen
- Personenspezifische Kenngrößen

Personenspezifische Kenngrößen

- Intraindividuelle Variabilität:
 - Bestimmung eines Parameters bei einer Person unter gleichen Bedingungen – enger Streubereich (CAVE: Einflussgrößen)
- Interindividuelle Variabilität:
 - Bestimmung eines Parameters bei einem großen Kollektiv unter gleichen Bedingungen; bei geringer analytischer Streuung: interindividuelle Variabilität = Referenzbereich

Ermittlung von Referenzbereichen (Normalwerten)

Kriterien der medizinischen Beurteilung von Laborergebnissen

- Plausibilitätskontrolle
 - Extremwerte, Parameterkonstellationen
- Longitudinale Beurteilung
 - Trend, "delta-check" (Veränderung im Vergleich zum Vorwert)
- Transversale Beurteilung
 - Vergleich mit Referenzbereichen (Normalbereichen)

Was ist "normal"?

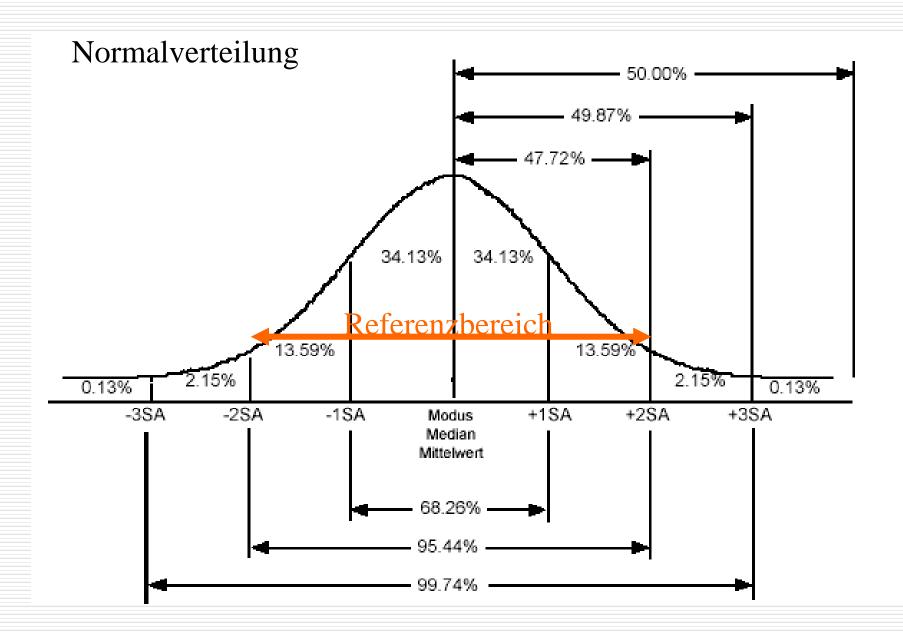
Grundlage	Anwendungsgebiet	Ausdruck
Am günstigsten in seiner Klasse	Metaphysik, Ethik, Ästhetik	"ideal"
Allgemein angestrebt	Politik, soziologie	"konventionell", Standard
Am günstigsten für Funktion und Überleben	Technik, Genetik	"optimal"
Nicht zu Schäden führend	Medizin, Justiz	"harmlos", "unschuldig"
Gewähnlich in einer Klasse anzutreffen	Biologie, Medizin	"üblich"
Wahrscheinlichkeiten folgend	Statistik	Gauss-Verteilung

Was ist normal?

Bedeutungen:

- [1] ohne Steigerung: Vorhandenen Normen entsprechend
 - (gesellschaftlichen, wissenschaftlichen, medizinischen, subjektiv erfahrenen)
- [2] Über längere Zeiträume ähnlich ablaufenden Ereignissen entsprechend

Herkunft:


griechisch, abgeleitet von Norm

Synonyme:

- [1] <u>gewöhnlich</u>, geistig gesund, <u>regelrecht</u>, <u>typisch</u>, <u>üblich</u>, <u>vorschriftsmäßig</u>
- [2] gewöhnlich, typisch, üblich

Was ist normal?

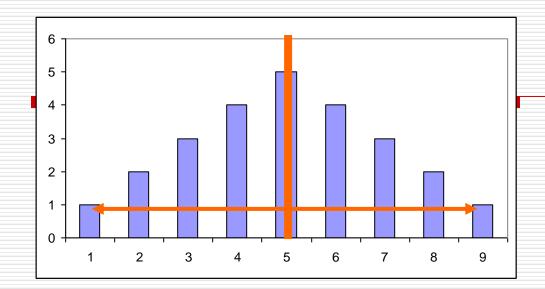
- Normal ≠ gesund
- ☐ Beispiel:
 - Karies ist in der westlichen Bevölkerung normal/üblich, aber deshalb nicht gesund

Definitionen

Mittelwert:

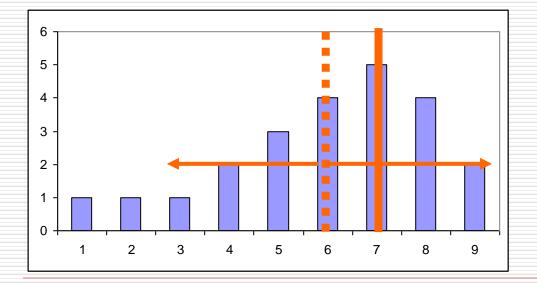
Der Mittelwert ist mit Sicherheit das bekannteste Lagemaß. Er wird ermittelt, indem man die Mess-oder Zählwerte aller Beobachtungseinheiten addiert und durch deren Anzahl dividiert. Der Mittelwert kann nur bei quantitativen Variablen berechnet werden. Bei symmetrischen Verteilungen entspricht der Mittelwert dem Median. Im Gegensatz zum Median ist der Mittelwert sehr ausreißerempfindlich: Sehr große Ausreißer am rechten Rand einer Verteilung bewirken, dass der Mittelwert wesentlich größer ist als der Median; extrem kleine Werte am linken Rand ergeben dagegen einen Mittelwert, der kleiner ist als der Median.

Definitionen


■ Median:

Dieses Lagemaß halbiert eine Population: Eine Hälfte der Mess- oder Zählwerte ist kleiner als der Median oder gleich dem Median. Die andere Hälfte der Werte ist so groß ist wie der Median oder größer. Bei symmetrischen Verteilungen entspricht der Median dem Mittelwert.

Definitionen


■ Modus:

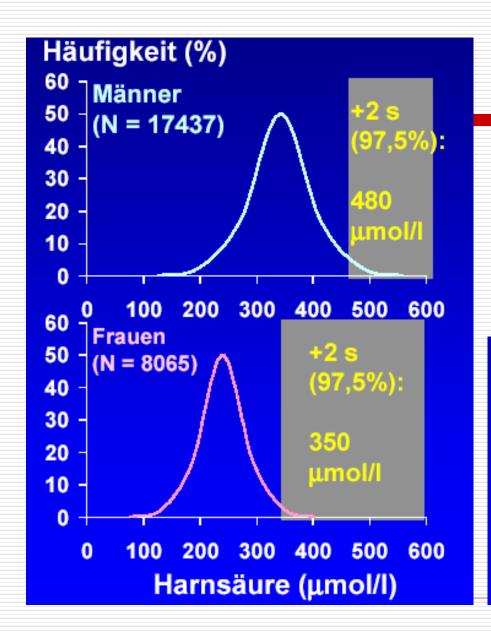
Dies ist derjenige Wert eines Merkmals. der bei einer Erhebung am häufigsten vorkommt. Beispiel: Bei einer Untersuchung von 1.000 Personen bezüglich deren Blutgruppen ergaben sich folgende Häufigkeiten: Blutgruppe 0: 386, A: 418, B: 128, AB: 68. Demnach ist die Blutgruppe A der Modus. Die Angabe eines Modus oder einer modalen Klasse ist allerdings nur dann sinnvoll, wenn es sich um einen ausgeprägten Gipfel handelt.

Mittelwert = Median = 5

2 SD = 4.08

Mittelwert = 6,12

Median = 7


$$2 SD = 4.18$$

Voraussetzung für die Ermittlung von Referenzbereichen (Normalbereichen)

- Untersuchung einer repräsentativen Stichprobe
- Standardisierung der Randbedingungen (z.B. Einflussgrößen und Störfaktoren)
- Bekannte und ausreichende Zuverlässigkeit der Analyse
- Verwendung eines geeigneten statistischen Modells

Hierarchische Struktur des Referenzbereichskonzeptes

Harnsäurekonzentration bei Männern und Frauen

Definition der Hyperurikämie (Harnsäure i. S. > 97.5 Perzentile) in Abhängigkeit von Alter und Geschlecht

	Harnsäure	Harnsäure i. S. (μmol/l)		
Alter	Männer	Frauen		
47.04				
15-24	444	324		
25-34	486	330		
35-44	474	336		
45-54	486	348		
55-64	486	384		

Harnsäurekonzentrationen bei Männern und Frauen

Referenzbereiche (epidemiologisch):

Frauen: $2,3 - 6,1 \text{ mg/dl} (137 - 363 \mu\text{mol/l})$

Männer: $3,6 - 8,2 \text{ mg/dl} (214 - 488 \mu\text{mol/l})$

Umrechnungsfaktor: $mg/dl \times 59,48 = \mu mol/l$

Häufigkeit der Gichtanfälle	Harnsäurekonzentration
0,5 %	7.0 - 8.9 mg/dl
4,9 %	> 9,0 mg/dl

Referenzbereich (klinisch):

< 7.0 mg/dl

Methodenabhängige Einflussgrößen auf den Referenzbereich

- Messtemperatur
- Mess pH
- Ionenkonzentration
- Antikörperspezifität
- Substrate

Referenzbereiche von Enzymen in Abhängigkeit von der Messtemperatur der Methode

Enzyme	Erwachsene / Geschlecht	Referenzbereich 25°C	Referenzbereich 37°C
	M	< 23 U/l	< 45 U/l
GPT/ALT	F	< 23 U/l	< 35 U/l
	M	< 19 U/l	< 35 U/l
GOT/AST	F	< 19 U/l	< 30 U/1
	M	< 29 U/l	< 55 U/l
GGT	F	< 29 U/l	< 38 U/l
	M	10 - 80 U/l	< 170 U/I
CK	F	10 - 80 U/1	< 145 U/l
	M	< 11 U/l	< 25 U/l
CK MB	F	< 11 U/l	< 22 U/l
	M	120 - 240 U/l	120 - 240 U/l
LDH	F	120 - 240 U/l	120 - 240 U/I
	M	3000 - 9000 U/I	4600 - 13000 U/I
СНЕ	F	3000 - 9000 U/I	3900 - 11000 U/I

Danke für die Aufmerksamkeit!

